噻虫啉
新烟碱
益达胺
啶虫脒
噻虫胺
代谢物
化学
毒理
生物
噻虫嗪
杀虫剂
生物化学
农学
作者
Huihui Zhang,Jianzheng Zou,Bob Yang,Yixi Zhang,Zewen Liu
标识
DOI:10.1021/acs.jafc.2c07692
摘要
CYP6ER1 overexpression is a prevalent mechanism for neonicotinoid resistance in Nilaparvata lugens. Except for imidacloprid, the metabolism of other neonicotinoids by CYP6ER1 lacked direct evidence. In this study, a CYP6ER1 knockout strain (CYP6ER1-/-) was constructed using the CRISPR/Cas9 strategy. The CYP6ER1-/- strain showed much higher susceptibility to imidacloprid and thiacloprid with an SI (sensitivity index, LC50 of WT/LC50 of CYP6ER1-/-) of over 100, which was 10-30 for four neonicotinoids (acetamiprid, nitenpyram, clothianidin, and dinotefuran) and less than 5 for flupyradifurone and sulfoxaflor. Recombinant CYP6ER1 showed the highest activity to metabolize imidacloprid and thiacloprid and moderate activity for the other four neonicotinoids. Main metabolite identification and oxidation site prediction revealed that CYP6ER1 activities were insecticide structure-dependent. The most potential oxidation site of imidacloprid and thiacloprid was located in the five-membered heterocycle with hydroxylation activity. For the other four neonicotinoids, the potential site was within the ring opening of a five-membered heterocycle, indicating N-desmethyl activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI