Breath-Hold CBCT-Guided CBCT-to-CT Synthesis via Multimodal Unsupervised Representation Disentanglement Learning

计算机科学 人工智能 成像体模 模式识别(心理学) 视图合成 工件(错误) 计算机视觉 核医学 医学 渲染(计算机图形)
作者
Yiwen Zhang,Chuanpu Li,Zhenhui Dai,Liming Zhong,Xuetao Wang,Wei Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2313-2324 被引量:4
标识
DOI:10.1109/tmi.2023.3247759
摘要

Adaptive radiation therapy (ART) aims to deliver radiotherapy accurately and precisely in the presence of anatomical changes, in which the synthesis of computed tomography (CT) from cone-beam CT (CBCT) is an important step. However, because of serious motion artifacts, CBCT-to-CT synthesis remains a challenging task for breast-cancer ART. Existing synthesis methods usually ignore motion artifacts, thereby limiting their performance on chest CBCT images. In this paper, we decompose CBCT-to-CT synthesis into artifact reduction and intensity correction, and we introduce breath-hold CBCT images to guide them. To achieve superior synthesis performance, we propose a multimodal unsupervised representation disentanglement (MURD) learning framework that disentangles the content, style, and artifact representations from CBCT and CT images in the latent space. MURD can synthesize different forms of images using the recombination of disentangled representations. Also, we propose a multipath consistency loss to improve structural consistency in synthesis and a multidomain generator to improve synthesis performance. Experiments on our breast-cancer dataset show that MURD achieves impressive performance with a mean absolute error of 55.23±9.94 HU, a structural similarity index measurement of 0.721±0.042, and a peak signal-to-noise ratio of 28.26±1.93 dB in synthetic CT. The results show that compared to state-of-the-art unsupervised synthesis methods, our method produces better synthetic CT images in terms of both accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助月野兔采纳,获得10
刚刚
刚刚
要多喝水完成签到 ,获得积分10
刚刚
王光勇完成签到,获得积分10
1秒前
张7发布了新的文献求助10
2秒前
xyx完成签到,获得积分10
2秒前
liuhao发布了新的文献求助10
3秒前
思源应助马潇采纳,获得10
3秒前
光纤陀螺完成签到,获得积分10
3秒前
4秒前
4秒前
大池子发布了新的文献求助10
4秒前
4秒前
憨憨兔子完成签到,获得积分10
4秒前
wad完成签到,获得积分20
5秒前
5秒前
5秒前
小蘑菇应助wangmeili.采纳,获得10
5秒前
5秒前
Huang完成签到 ,获得积分0
5秒前
瘦瘦慕凝发布了新的文献求助10
5秒前
朴素太阳完成签到,获得积分20
6秒前
慧慧完成签到,获得积分10
6秒前
大鑫发布了新的文献求助10
7秒前
7秒前
hin完成签到,获得积分20
7秒前
豆西豆完成签到,获得积分10
7秒前
后知后觉完成签到,获得积分10
8秒前
开放诗翠完成签到,获得积分10
8秒前
Akim应助柒柒采纳,获得10
8秒前
上官若男应助一米阳光采纳,获得10
9秒前
张才豪发布了新的文献求助10
9秒前
11秒前
xiaoxia发布了新的文献求助10
11秒前
笑笑的妙松完成签到,获得积分10
12秒前
搜集达人应助冷傲奇异果采纳,获得10
12秒前
Tammy完成签到,获得积分10
12秒前
橙子完成签到,获得积分10
12秒前
EwhenQ完成签到,获得积分10
12秒前
潘尼沃斯完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585514
求助须知:如何正确求助?哪些是违规求助? 4002204
关于积分的说明 12389666
捐赠科研通 3678349
什么是DOI,文献DOI怎么找? 2027265
邀请新用户注册赠送积分活动 1060773
科研通“疑难数据库(出版商)”最低求助积分说明 947278