Breath-Hold CBCT-Guided CBCT-to-CT Synthesis via Multimodal Unsupervised Representation Disentanglement Learning

计算机科学 人工智能 成像体模 模式识别(心理学) 视图合成 工件(错误) 计算机视觉 核医学 医学 渲染(计算机图形)
作者
Yiwen Zhang,Chuanpu Li,Zhenhui Dai,Liming Zhong,Xuetao Wang,Wei Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (8): 2313-2324 被引量:3
标识
DOI:10.1109/tmi.2023.3247759
摘要

Adaptive radiation therapy (ART) aims to deliver radiotherapy accurately and precisely in the presence of anatomical changes, in which the synthesis of computed tomography (CT) from cone-beam CT (CBCT) is an important step. However, because of serious motion artifacts, CBCT-to-CT synthesis remains a challenging task for breast-cancer ART. Existing synthesis methods usually ignore motion artifacts, thereby limiting their performance on chest CBCT images. In this paper, we decompose CBCT-to-CT synthesis into artifact reduction and intensity correction, and we introduce breath-hold CBCT images to guide them. To achieve superior synthesis performance, we propose a multimodal unsupervised representation disentanglement (MURD) learning framework that disentangles the content, style, and artifact representations from CBCT and CT images in the latent space. MURD can synthesize different forms of images using the recombination of disentangled representations. Also, we propose a multipath consistency loss to improve structural consistency in synthesis and a multidomain generator to improve synthesis performance. Experiments on our breast-cancer dataset show that MURD achieves impressive performance with a mean absolute error of 55.23±9.94 HU, a structural similarity index measurement of 0.721±0.042, and a peak signal-to-noise ratio of 28.26±1.93 dB in synthetic CT. The results show that compared to state-of-the-art unsupervised synthesis methods, our method produces better synthetic CT images in terms of both accuracy and visual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助reck采纳,获得10
1秒前
王淳完成签到 ,获得积分10
1秒前
2秒前
3秒前
高高的天亦完成签到 ,获得积分10
4秒前
追寻书白完成签到,获得积分20
5秒前
晚街听风完成签到 ,获得积分10
6秒前
6秒前
感觉他香香的完成签到 ,获得积分10
7秒前
7秒前
牛牛要当院士喽完成签到,获得积分10
7秒前
结实的老虎完成签到,获得积分10
9秒前
坚强丹雪完成签到,获得积分10
11秒前
13秒前
15秒前
WZ0904发布了新的文献求助10
17秒前
狂野静曼完成签到 ,获得积分10
18秒前
武映易完成签到 ,获得积分10
20秒前
zzz发布了新的文献求助10
21秒前
22秒前
大蒜味酸奶钊完成签到 ,获得积分10
22秒前
鱼宇纸完成签到 ,获得积分10
22秒前
LEE完成签到,获得积分20
22秒前
22秒前
Ava应助无限的绿真采纳,获得10
24秒前
小马甲应助xiongdi521采纳,获得10
24秒前
科研通AI5应助陶醉觅夏采纳,获得200
27秒前
憨鬼憨切发布了新的文献求助10
27秒前
27秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
29秒前
30秒前
31秒前
hh应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Ava应助科研通管家采纳,获得10
31秒前
Eva完成签到,获得积分10
31秒前
传奇3应助科研通管家采纳,获得10
31秒前
斯文败类应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849