电解质
金属锂
锂(药物)
盐(化学)
电池(电)
水分
材料科学
金属
图层(电子)
无机化学
化学工程
化学
复合材料
电极
冶金
有机化学
内科学
医学
工程类
功率(物理)
物理
热力学
物理化学
作者
Zuxin Wen,Wenqiang Fang,Fenglin Wang,Hong Suk Kang,Shuoqing Zhao,Shaojun Guo,Gen Chen
标识
DOI:10.1002/anie.202314876
摘要
Abstract The carbonate electrolyte chemistry is a primary determinant for the development of high‐voltage lithium metal batteries (LMBs). Unfortunately, their implementation is greatly plagued by sluggish electrode interfacial dynamics and insufficient electrolyte thermodynamic stability. Herein, lithium trifluoroacetate‐lithium nitrate (LiTFA−LiNO 3 ) dual‐salt additive‐reinforced carbonate electrolyte (LTFAN) is proposed for stabilizing high‐voltage LMBs. We reveal that 1) the in situ generated inorganic‐rich electrode‐electrolyte interphase (EEI) enables rapid interfacial dynamics, 2) TFA − preferentially interacts with moisture over PF 6 − to strengthen the moisture tolerance of designed electrolyte, and 3) NO 3 − is found to be noticeably enriched at the cathode interface on charging, thus constructing Li + ‐enriched, solvent‐coordinated, thermodynamically favorable electric double layer (EDL). The superior moisture tolerance of LTFAN and the thermodynamically stable EDL constructed at cathode interface play a decisive role in upgrading the compatibility of carbonate electrolyte with high‐voltage cathode. The LMBs with LTFAN realize 4.3 V‐NCM523/4.4 V‐NCM622 superior cycling reversibility and excellent rate capability, which is the leading level of documented records for carbonate electrode.
科研通智能强力驱动
Strongly Powered by AbleSci AI