亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RIS-Assisted UAV-Enabled Green Communications for Industrial IoT Exploiting Deep Learning

计算机科学 物联网 深度学习 工业互联网 人工智能 嵌入式系统
作者
Qian Xu,Qian You,Yanyun Gong,Xin Yang,Ling Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (16): 26595-26609 被引量:4
标识
DOI:10.1109/jiot.2024.3369687
摘要

Industrial Internet of Things (IIoT), regarded as an important technology for Industry 4.0, has the capability to connect massive IoT devices anywhere and at anytime in manufacturing industry. Enabling such a huge network requires message delivering among sensors, actuators, controllers, and the remote control to be seamless and reliable. However, IIoT wireless environment typically faces challenges such as blockage caused by IoT obstacles. To tackle the above issue, the unmanned aerial vehicle (UAV) and the reconfigurable intelligent surface (RIS) are exploited in this paper, which can provide favorable air-to-ground links and further rebuild the wireless channels. Moreover, the device-to-device (D2D) communication technique is introduced to enable direct information exchange between IoT devices. Specifically, we consider both the communication between the UAV and the cellular users (e.g., fixed IoT infrastructures) as well as the communication between D2D users (e.g., mobile IoT devices). Instead of only considering throughput, we focus on energy efficiency optimization for D2D users while guaranteeing the quality of service for cellular users, since energy-efficient transmission or green communication is important for IIoT scenarios. The transmit power, channel allocation parameters, and RIS's reflection coefficients are jointly optimized to maximize energy efficiency for D2D users. To solve the formulated optimization problem, both centralized and distributed optimization algorithms based on deep neural networks are provided. Simulation results show that the introduction of RIS can significantly improve system performance. Moreover, the proposed algorithms can approximate the optimal solutions without the need of exhaustive search.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
饱满若灵发布了新的文献求助10
4秒前
9秒前
炙热念双完成签到 ,获得积分10
11秒前
小太阳发布了新的文献求助10
12秒前
mirage应助天玄采纳,获得10
13秒前
顽强的小刘应助天玄采纳,获得10
13秒前
13秒前
顺心的定帮完成签到 ,获得积分10
14秒前
饱满若灵完成签到,获得积分10
14秒前
jojo完成签到 ,获得积分10
14秒前
芒果布丁完成签到 ,获得积分10
15秒前
囿于昼夜发布了新的文献求助10
17秒前
囿于昼夜完成签到,获得积分10
24秒前
35秒前
wen发布了新的文献求助10
39秒前
wszzb完成签到,获得积分10
42秒前
Hcc完成签到 ,获得积分10
42秒前
合一海盗完成签到,获得积分10
43秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
所所应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
NexusExplorer应助科研通管家采纳,获得50
44秒前
研友_VZG7GZ应助科研通管家采纳,获得10
44秒前
汉堡包应助科研通管家采纳,获得10
45秒前
深情安青应助科研通管家采纳,获得10
45秒前
称心采枫完成签到 ,获得积分10
47秒前
wen完成签到,获得积分10
53秒前
酷炫的小紫完成签到 ,获得积分10
53秒前
whyzz完成签到 ,获得积分10
54秒前
清风完成签到 ,获得积分10
55秒前
hmf1995完成签到 ,获得积分10
58秒前
58秒前
王子娇完成签到 ,获得积分10
1分钟前
科研通AI5应助不能随便采纳,获得10
1分钟前
LMDD发布了新的文献求助10
1分钟前
XJT007完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
彪壮的青亦完成签到,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674245
求助须知:如何正确求助?哪些是违规求助? 3229667
关于积分的说明 9786628
捐赠科研通 2940217
什么是DOI,文献DOI怎么找? 1611741
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736372