亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recent developments in denoising medical images using deep learning: An overview of models, techniques, and challenges

医学诊断 人工智能 医学影像学 卷积神经网络 深度学习 噪音(视频) 领域(数学) 降噪 莱斯衰减 计算机科学 模式识别(心理学) 机器学习 图像(数学) 算法 医学 数学 解码方法 病理 衰退 纯数学
作者
Nahida Nazir,Abid Sarwar,Baljit Singh Saini
出处
期刊:Micron [Elsevier]
卷期号:180: 103615-103615 被引量:3
标识
DOI:10.1016/j.micron.2024.103615
摘要

Medical imaging plays a critical role in diagnosing and treating various medical conditions. However, interpreting medical images can be challenging even for expert clinicians, as they are often degraded by noise and artifacts that can hinder the accurate identification and analysis of diseases, leading to severe consequences such as patient misdiagnosis or mortality. Various types of noise, including Gaussian, Rician, and Salt-pepper noise, can corrupt the area of interest, limiting the precision and accuracy of algorithms. Denoising algorithms have shown the potential in improving the quality of medical images by removing noise and other artifacts that obscure essential information. Deep learning has emerged as a powerful tool for image analysis and has demonstrated promising results in denoising different medical images such as MRIs, CT scans, PET scans, etc. This review paper provides a comprehensive overview of state-of-the-art deep learning algorithms used for denoising medical images. A total of 120 relevant papers were reviewed, and after screening with specific inclusion and exclusion criteria, 104 papers were selected for analysis. This study aims to provide a thorough understanding for researchers in the field of intelligent denoising by presenting an extensive survey of current techniques and highlighting significant challenges that remain to be addressed. The findings of this review are expected to contribute to the development of intelligent models that enable timely and accurate diagnoses of medical disorders. It was found that 40% of the researchers used models based on Deep convolutional neural networks to denoise the images, followed by encoder-decoder (18%) and other artificial intelligence-based techniques (15%) (Like DIP, etc.). Generative adversarial network was used by 12%, transformer-based approaches (13%) and multilayer perceptron was used by 2% of the researchers. Moreover, Gaussian noise was present in 35% of the images, followed by speckle noise (16%), poisson noise (14%), artifacts (10%), rician noise (7%), Salt-pepper noise (6%), Impulse noise (3%) and other types of noise (9%). While the progress in developing novel models for the denoising of medical images is evident, significant work remains to be done in creating standardized denoising models that perform well across a wide spectrum of medical images. Overall, this review highlights the importance of denoising medical images and provides a comprehensive understanding of the current state-of-the-art deep learning algorithms in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强强发布了新的文献求助10
2秒前
哈哈哈完成签到,获得积分10
3秒前
14秒前
15秒前
强强完成签到,获得积分10
17秒前
18秒前
善学以致用应助包容采纳,获得30
20秒前
21秒前
yue完成签到,获得积分20
22秒前
烟消云散完成签到,获得积分10
25秒前
33秒前
科研通AI5应助清新的冷松采纳,获得10
57秒前
58秒前
打打应助科研通管家采纳,获得10
58秒前
飞快的水云完成签到,获得积分10
1分钟前
Agernon应助超人不会飞采纳,获得10
1分钟前
1分钟前
小四月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
华鹊鹊发布了新的文献求助10
1分钟前
Ray羽曦~应助白华苍松采纳,获得10
2分钟前
小四月完成签到,获得积分10
2分钟前
s20001021s完成签到,获得积分10
2分钟前
自由飞阳完成签到,获得积分10
2分钟前
美罗培南完成签到,获得积分10
2分钟前
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
Betty完成签到 ,获得积分0
3分钟前
敞敞亮亮完成签到 ,获得积分10
3分钟前
yema完成签到 ,获得积分10
3分钟前
田様应助暖阳采纳,获得10
3分钟前
栗子味的茶完成签到 ,获得积分10
3分钟前
Jayden完成签到 ,获得积分10
3分钟前
3分钟前
s20001021s发布了新的文献求助10
3分钟前
3分钟前
xiongyh10完成签到,获得积分10
3分钟前
Yesaniar发布了新的文献求助10
3分钟前
传奇3应助HK采纳,获得20
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526536
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281972
捐赠科研通 2804528
什么是DOI,文献DOI怎么找? 1539486
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579