作者
Wei Fu,Nan Ma,Jie Liang,Lu Feng,Hong Zhou
摘要
With rapid industrialization and urbanization, numerous wastewater contains elevated concentration of Hg(II), and its concentration must be reduced to the discharge limit, so as not to cause serious pollution to the environment. In this paper, a modified chitosan adsorbent material, AMT-DMTD-CS (CS = chitosan, AMT = 2-amino-5-mercapto-1,3,4-thiadiazole, DMTD = 1,3,4-thiadiazole-2,5-dithiol) was prepared. FT-IR, XPS, elemental analysis, and FE-SEM confirmed that AMT and DMTD were successfully grafted covalently onto CS, with BET analysis showing a specific surface area of 105.55 m2/g for AMT-DMTD-CS. Adsorption study suggests that the optimal pH environment for AMT-DMTD-CS to adsorb Hg(II) is 4.0, and the saturated uptake capacity reaches 687.17 mg/g at 318 K, even after eight regenerations, the removal is still maintained at 80.06 %. Moreover, the adsorption behavior is in perfect agreement with the pseudo-second order kinetic model and the Langmuir isotherm model. In addition, AMT-DMTD-CS shows quite favorable selectivity for Hg(II) in a variety of co-existing metal ions. According to the FT-IR and XPS analysis of AMT-DMTD-CS-Hg(II), the synergistic complexation of -OH, -NH2, -NH, CN, CS and -SH to Hg(II) is considered as the main reason that leading to the elevated adsorption capacity.