Two-phase flow regime identification using multi-method feature extraction and explainable kernel Fisher discriminant analysis

核Fisher判别分析 离散小波变换 降维 人工智能 计算机科学 模式识别(心理学) 特征提取 线性判别分析 流量(数学) 核(代数) 小波变换 算法 支持向量机 数学 小波 核方法 几何学 组合数学
作者
Umair Khan,William Pao,Karl Ezra Pilario,Nabihah Sallih,Rehan Khan
出处
期刊:International Journal of Numerical Methods for Heat & Fluid Flow [Emerald (MCB UP)]
卷期号:34 (8): 2836-2864 被引量:4
标识
DOI:10.1108/hff-09-2023-0526
摘要

Purpose Identifying the flow regime is a prerequisite for accurately modeling two-phase flow. This paper aims to introduce a comprehensive data-driven workflow for flow regime identification. Design/methodology/approach A numerical two-phase flow model was validated against experimental data and was used to generate dynamic pressure signals for three different flow regimes. First, four distinct methods were used for feature extraction: discrete wavelet transform (DWT), empirical mode decomposition, power spectral density and the time series analysis method. Kernel Fisher discriminant analysis (KFDA) was used to simultaneously perform dimensionality reduction and machine learning (ML) classification for each set of features. Finally, the Shapley additive explanations (SHAP) method was applied to make the workflow explainable. Findings The results highlighted that the DWT + KFDA method exhibited the highest testing and training accuracy at 95.2% and 88.8%, respectively. Results also include a virtual flow regime map to facilitate the visualization of features in two dimension. Finally, SHAP analysis showed that minimum and maximum values extracted at the fourth and second signal decomposition levels of DWT are the best flow-distinguishing features. Practical implications This workflow can be applied to opaque pipes fitted with pressure sensors to achieve flow assurance and automatic monitoring of two-phase flow occurring in many process industries. Originality/value This paper presents a novel flow regime identification method by fusing dynamic pressure measurements with ML techniques. The authors’ novel DWT + KFDA method demonstrates superior performance for flow regime identification with explainability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zly完成签到 ,获得积分10
刚刚
阿诺德发布了新的文献求助10
3秒前
ddd发布了新的文献求助10
3秒前
科研通AI2S应助hhh采纳,获得10
3秒前
5秒前
小马甲应助请叫我鬼才采纳,获得10
6秒前
9秒前
蓝色小乐完成签到,获得积分10
10秒前
所所应助羞涩的问兰采纳,获得10
12秒前
Sherry完成签到,获得积分10
12秒前
的微博发布了新的文献求助10
14秒前
Bruce发布了新的文献求助10
17秒前
扬大小汤发布了新的文献求助10
18秒前
19秒前
Mera完成签到,获得积分10
19秒前
20秒前
嘎嘎嘎完成签到 ,获得积分10
20秒前
等待的mango应助1111采纳,获得10
21秒前
ZeroONE发布了新的文献求助10
22秒前
23秒前
Mera发布了新的文献求助30
24秒前
XuHuang发布了新的文献求助10
24秒前
24秒前
赘婿应助强健的亦巧采纳,获得10
25秒前
小菜鸡发布了新的文献求助10
25秒前
澹台烬完成签到,获得积分10
26秒前
科研狗完成签到,获得积分20
26秒前
香蕉觅云应助神麒小雪采纳,获得10
28秒前
章鱼发布了新的文献求助10
28秒前
汉堡包应助swagman采纳,获得10
29秒前
酷波er应助秦pale采纳,获得10
29秒前
香蕉觅云应助微弱de胖头采纳,获得10
29秒前
Colossus完成签到,获得积分10
30秒前
李兴完成签到 ,获得积分10
30秒前
文艺谷蓝发布了新的文献求助10
31秒前
31秒前
李爱国应助PPP采纳,获得10
31秒前
32秒前
XuHuang完成签到,获得积分10
35秒前
ZeroONE完成签到,获得积分10
35秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421326
求助须知:如何正确求助?哪些是违规求助? 3022139
关于积分的说明 8899349
捐赠科研通 2709441
什么是DOI,文献DOI怎么找? 1485727
科研通“疑难数据库(出版商)”最低求助积分说明 686881
邀请新用户注册赠送积分活动 681931