revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵夏云完成签到,获得积分10
刚刚
开放身影完成签到,获得积分10
刚刚
王盼完成签到 ,获得积分10
1秒前
1秒前
大好好发布了新的文献求助10
1秒前
xzg111完成签到,获得积分10
2秒前
myangm完成签到,获得积分10
2秒前
2秒前
2秒前
倪妮完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
朱朱应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
浮游应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
loewy发布了新的文献求助10
4秒前
TYMY应助科研通管家采纳,获得20
4秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Rsoup发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
upup应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得30
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732