revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜王发布了新的文献求助10
刚刚
英姑应助俊逸战斗机采纳,获得10
1秒前
2秒前
cocolu应助jing122061采纳,获得10
3秒前
5秒前
ghtsmile完成签到,获得积分10
5秒前
星辰完成签到,获得积分10
7秒前
SciGPT应助lele采纳,获得10
9秒前
9秒前
10秒前
12秒前
Lyubb完成签到 ,获得积分10
13秒前
14秒前
英勇代荷发布了新的文献求助10
14秒前
liguanyu1078完成签到,获得积分10
15秒前
16秒前
小二郎应助pla采纳,获得10
16秒前
16秒前
16秒前
16秒前
埮埮完成签到,获得积分10
19秒前
明亮的绫发布了新的文献求助10
19秒前
岗岗完成签到,获得积分10
20秒前
20秒前
wgs623完成签到 ,获得积分10
21秒前
waerteyang发布了新的文献求助10
21秒前
lele完成签到,获得积分10
22秒前
su发布了新的文献求助10
22秒前
留胡子的思真完成签到,获得积分10
22秒前
枵蕾完成签到,获得积分10
23秒前
24秒前
小芳应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
sissiarno应助科研通管家采纳,获得30
25秒前
25秒前
Ava应助科研通管家采纳,获得10
25秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
orixero应助科研通管家采纳,获得10
25秒前
羡三岁应助科研通管家采纳,获得20
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315957
求助须知:如何正确求助?哪些是违规求助? 2947729
关于积分的说明 8538133
捐赠科研通 2623808
什么是DOI,文献DOI怎么找? 1435496
科研通“疑难数据库(出版商)”最低求助积分说明 665607
邀请新用户注册赠送积分活动 651454