revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIJIngcan发布了新的文献求助10
刚刚
Kate发布了新的文献求助10
刚刚
2秒前
2秒前
老北京发布了新的文献求助10
3秒前
JKA23发布了新的文献求助10
4秒前
5秒前
杨丽发布了新的文献求助10
5秒前
6秒前
泰山球迷发布了新的文献求助10
6秒前
7秒前
小w爱吃锅包肉应助口香糖采纳,获得10
7秒前
8秒前
8秒前
赖同学发布了新的文献求助20
9秒前
9秒前
Z_Miaom完成签到,获得积分10
10秒前
知北完成签到,获得积分10
11秒前
11秒前
Sir.夏季风发布了新的文献求助10
12秒前
佳雯发布了新的文献求助10
12秒前
千里完成签到,获得积分10
12秒前
12秒前
JKA23完成签到,获得积分10
13秒前
2026毕业啦发布了新的文献求助10
13秒前
14秒前
14秒前
郗妫完成签到,获得积分10
14秒前
星辰大海应助Z_Miaom采纳,获得10
15秒前
15秒前
端庄诗翠发布了新的文献求助30
17秒前
17秒前
科研通AI5应助周周采纳,获得20
18秒前
18秒前
斯文败类应助ximei采纳,获得10
19秒前
20秒前
科目三应助贪玩蔡徐坤采纳,获得10
20秒前
20秒前
Lucas应助刘永红采纳,获得10
21秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590