revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowu完成签到,获得积分10
1秒前
FashionBoy应助conlensce采纳,获得10
1秒前
loseyourself完成签到,获得积分10
1秒前
肖婉婷完成签到,获得积分10
1秒前
浮游应助Hilda007采纳,获得10
1秒前
wanglu完成签到,获得积分10
1秒前
靓仔要亮完成签到,获得积分10
1秒前
踏实的惋庭完成签到,获得积分10
2秒前
qah发布了新的文献求助10
2秒前
2秒前
梦想完成签到,获得积分10
3秒前
3秒前
刻苦秋尽发布了新的文献求助10
3秒前
深情笑南完成签到,获得积分20
4秒前
4秒前
于淼完成签到,获得积分10
4秒前
小洁完成签到 ,获得积分10
5秒前
小陀螺完成签到,获得积分10
5秒前
宝海青完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
渠建武完成签到 ,获得积分10
6秒前
言小完成签到,获得积分10
6秒前
7秒前
7秒前
凌小光_完成签到,获得积分10
8秒前
清水小镇完成签到,获得积分10
8秒前
时闲完成签到,获得积分10
8秒前
小二郎应助baimiaomuzi采纳,获得10
8秒前
左丘尔阳完成签到,获得积分10
9秒前
myh完成签到,获得积分10
9秒前
田様应助小章鱼采纳,获得10
10秒前
刻苦秋尽完成签到,获得积分10
10秒前
10秒前
我讨厌文献综述完成签到 ,获得积分10
10秒前
沉默的依霜完成签到 ,获得积分10
10秒前
清脆的水蜜桃完成签到,获得积分10
10秒前
小野菌发布了新的文献求助10
11秒前
张土豆发布了新的文献求助10
11秒前
内向的冰棍完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477103
求助须知:如何正确求助?哪些是违规求助? 4578993
关于积分的说明 14366029
捐赠科研通 4507069
什么是DOI,文献DOI怎么找? 2469632
邀请新用户注册赠送积分活动 1456830
关于科研通互助平台的介绍 1430868