revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋青寒发布了新的文献求助30
刚刚
刚好夏天完成签到 ,获得积分10
刚刚
大个应助海绵采纳,获得10
1秒前
xiying完成签到 ,获得积分10
1秒前
俏以完成签到,获得积分10
2秒前
2秒前
非而者厚应助飞飞888采纳,获得10
2秒前
3秒前
4秒前
lseven完成签到,获得积分10
4秒前
4秒前
fengmian完成签到,获得积分10
5秒前
坚定天佑完成签到,获得积分20
6秒前
7秒前
fangyuan发布了新的文献求助10
7秒前
不太想学习完成签到 ,获得积分10
8秒前
8秒前
Owen应助兜子采纳,获得10
9秒前
9秒前
寒冷怜南发布了新的文献求助10
9秒前
manjusaka发布了新的文献求助20
10秒前
王珺发布了新的文献求助10
11秒前
12秒前
overlood完成签到 ,获得积分10
13秒前
14秒前
tuyfytjt发布了新的文献求助10
15秒前
wangzheng发布了新的文献求助10
15秒前
当当发布了新的文献求助10
15秒前
火火发布了新的文献求助30
16秒前
冷艳薯片发布了新的文献求助20
16秒前
马里奥发布了新的文献求助10
19秒前
科科完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
22秒前
阿宁宁完成签到 ,获得积分10
25秒前
聪慧小霜应助火火采纳,获得10
25秒前
当当完成签到,获得积分20
26秒前
咄咄完成签到 ,获得积分10
26秒前
zhang26xian完成签到,获得积分10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585938
求助须知:如何正确求助?哪些是违规求助? 4002681
关于积分的说明 12390812
捐赠科研通 3678747
什么是DOI,文献DOI怎么找? 2027592
邀请新用户注册赠送积分活动 1061082
科研通“疑难数据库(出版商)”最低求助积分说明 947447