revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
轻松狗应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
MX应助N1koooooo采纳,获得20
1秒前
1秒前
2秒前
Owen应助潇洒的夜云采纳,获得10
2秒前
3秒前
turbohero完成签到,获得积分10
3秒前
3秒前
秀兰完成签到,获得积分10
3秒前
zxx完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助ZC采纳,获得10
4秒前
4秒前
chenhuan发布了新的文献求助10
5秒前
5秒前
干干发布了新的文献求助20
6秒前
6秒前
6秒前
Jasper应助乔123采纳,获得10
7秒前
8秒前
ED驳回了MX应助
8秒前
8秒前
STAN发布了新的文献求助10
8秒前
无恃有恐发布了新的文献求助10
8秒前
8秒前
9秒前
coolkid应助飘逸楷瑞采纳,获得20
9秒前
北北发布了新的文献求助10
11秒前
卑鄙的熊发布了新的文献求助10
12秒前
yiyy完成签到,获得积分10
12秒前
酷炫青烟完成签到,获得积分10
13秒前
孙哈哈完成签到 ,获得积分10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842381
求助须知:如何正确求助?哪些是违规求助? 3384455
关于积分的说明 10535108
捐赠科研通 3104971
什么是DOI,文献DOI怎么找? 1709892
邀请新用户注册赠送积分活动 823415
科研通“疑难数据库(出版商)”最低求助积分说明 774059