revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
憨_完成签到,获得积分10
1秒前
1秒前
咕咕唧唧完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
顾矜应助hou采纳,获得10
2秒前
4秒前
5秒前
李健的小迷弟应助tmj采纳,获得10
5秒前
zzz发布了新的文献求助10
5秒前
蛋蛋发布了新的文献求助10
6秒前
HJJHJH发布了新的文献求助10
6秒前
Wan完成签到,获得积分10
6秒前
wanci应助yasmin采纳,获得10
7秒前
7秒前
finish发布了新的文献求助10
8秒前
hxxcyb发布了新的文献求助10
10秒前
Piokoig完成签到,获得积分10
11秒前
香蕉海白发布了新的文献求助10
12秒前
Akim应助Lee采纳,获得10
12秒前
AK完成签到,获得积分10
12秒前
星辰大海应助keyanqianjin采纳,获得10
12秒前
13秒前
16秒前
16秒前
16秒前
朴素的雅寒完成签到,获得积分10
17秒前
hAFMET发布了新的文献求助10
17秒前
17秒前
隐形曼青应助wyx采纳,获得10
17秒前
18秒前
gzmejiji发布了新的文献求助10
19秒前
20秒前
柒夏完成签到,获得积分10
20秒前
浮游应助NoahZhaodwqd采纳,获得10
20秒前
20秒前
Sweet发布了新的文献求助10
20秒前
21秒前
鱼鱼鱼完成签到,获得积分10
21秒前
tmj发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458204
求助须知:如何正确求助?哪些是违规求助? 4564331
关于积分的说明 14294470
捐赠科研通 4489155
什么是DOI,文献DOI怎么找? 2458888
邀请新用户注册赠送积分活动 1448759
关于科研通互助平台的介绍 1424403