revoAD: Revolutionizing Alzhiemer’s Disease Diagnosis through Multimodal Machine Learning for Universal Screening via Speech and Handwriting Patterns

计算机科学 笔迹 语音识别 人工智能 自然语言处理
作者
Benjamin M. Lu,Abhinav Gurram
标识
DOI:10.1109/iciibms60103.2023.10347810
摘要

Alzheimer's Disease (AD) is a global public health concern that leads to cognitive decline and memory loss. Existing AD diagnosis methods are invasive, expensive, and time-consuming. Hence, a cost-effective, highly sensitive screening tool is imperative. This study employs machine learning (ML) to detect AD through speech and handwriting pattern analysis. Over 15,000 samples, including audio, handwriting, and cognitive data from AD patients and controls, were preprocessed with Mel-Frequency cepstral coefficient testing, image normalization, binarization, and feature extraction. Six ML models were trained to detect AD based on both speech and handwriting markers like slurred speech, abrupt sentence endings, pronounced forgetfulness, legibility, stroke information, and zone-based features, achieving a combined F1-Score of 96.2% using an 80/20 split. The "revoAD" mobile app, developed with React JavaScript and Python OpenCV, achieved a 97.6% training accuracy, 97.3% data validation accuracy, and 10x faster diagnosis, addressing healthcare disparities by offering low-cost screening, especially in underserved areas. This study leveraged machine learning for AD diagnosis, promising to improve early detection and healthcare access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限曲奇发布了新的文献求助10
刚刚
所所应助端庄涟妖采纳,获得10
1秒前
2秒前
CodeCraft应助夕音采纳,获得10
2秒前
kjz完成签到 ,获得积分10
2秒前
情怀应助坦率的寻双采纳,获得10
3秒前
SciGPT应助无限曲奇采纳,获得10
5秒前
深情安青应助wangli采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
石桥完成签到,获得积分10
6秒前
魏少爷发布了新的文献求助10
8秒前
橘橙色完成签到,获得积分20
8秒前
澡雪发布了新的文献求助10
9秒前
swift3t完成签到,获得积分10
10秒前
12秒前
13秒前
胡言乱语完成签到,获得积分10
14秒前
cllg发布了新的文献求助10
16秒前
fanhaonan发布了新的文献求助10
16秒前
16秒前
16秒前
wangli完成签到,获得积分10
17秒前
613完成签到,获得积分10
17秒前
橘橙色发布了新的文献求助30
19秒前
21秒前
酸奶烤着吃完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
刘亚茹发布了新的文献求助10
22秒前
留胡子的霆完成签到,获得积分10
23秒前
可爱的函函应助魏少爷采纳,获得10
26秒前
端庄涟妖发布了新的文献求助10
26秒前
坦率的寻双完成签到,获得积分10
26秒前
stitchkk应助cllg采纳,获得10
28秒前
28秒前
黄百川完成签到 ,获得积分10
30秒前
32秒前
33秒前
Fengh发布了新的文献求助10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975543
求助须知:如何正确求助?哪些是违规求助? 3519971
关于积分的说明 11200248
捐赠科研通 3256311
什么是DOI,文献DOI怎么找? 1798213
邀请新用户注册赠送积分活动 877446
科研通“疑难数据库(出版商)”最低求助积分说明 806338