SAC-based UAV mobile edge computing for energy minimization and secure data transmission

计算机科学 能源消耗 移动边缘计算 架空(工程) 服务器 分布式计算 数据传输 边缘计算 实时计算 GSM演进的增强数据速率 计算机网络 工程类 电信 操作系统 电气工程
作者
Xu Zhao,Tianhao Zhao,Feiyu Wang,Yichuan Wu,Maozhen Li
出处
期刊:Ad hoc networks [Elsevier]
卷期号:157: 103435-103435 被引量:5
标识
DOI:10.1016/j.adhoc.2024.103435
摘要

In recent years, the use of UAVs to carry mobile edge computing servers has become an emerging solution to the problem of collaborative ground-to-air communication. However, due to the limited energy consumption of UAVs and the open nature of wireless communication, UAV-based mobile edge computing faces issues such as limited operation time and the potential for insecure connections during data transmission. In this paper, we model a secure data transmission model for UAVs with the goal of minimizing energy consumption. First, we decompose the system energy consumption optimization problem into two sub-problems: ground user energy consumption overhead and UAV energy consumption overhead. We consider the limitations of UAV flight range, computational power, and transmission capability in relation to ground user and UAV, solve the energy consumption optimization problem by deep reinforcement learning, and propose a solution based on the SAC algorithm. The solution applies the idea of maximum entropy to explore the optimal policy and use efficient iterative updates to obtain the optimal policy, enhancing the exploration capability of the algorithm and improving the convergence speed of the training process by retaining all policies with high return values. Secondly, considering the existence of insecure connection nodes in practical application scenarios, a ground user data protection scheme based on Paillier encryption and blockchain is used to achieve secure data transmission. Simulation results show that the proposed method can achieve secure data offloading, effectively reduce the average energy consumption of users, and have good stability and convergence compared with existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时冬冬应助虚心的静枫采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
怡然花卷完成签到,获得积分20
1秒前
老lili完成签到,获得积分10
1秒前
笑笑丶不爱笑完成签到,获得积分10
2秒前
2秒前
大本完成签到,获得积分10
3秒前
ylf完成签到,获得积分10
3秒前
3秒前
Oil完成签到,获得积分10
3秒前
3秒前
张姣姣完成签到,获得积分10
4秒前
xiyueQAQ完成签到,获得积分10
4秒前
5秒前
5秒前
英勇冬瓜完成签到,获得积分10
5秒前
5秒前
5秒前
打打应助DrLin采纳,获得10
5秒前
怡然花卷发布了新的文献求助10
6秒前
6秒前
葡萄小伊ovo完成签到 ,获得积分10
6秒前
6秒前
呆萌菲音发布了新的文献求助10
6秒前
啦啦啦123发布了新的文献求助10
6秒前
7秒前
深情安青应助yu采纳,获得10
7秒前
Zenobia完成签到,获得积分10
7秒前
在水一方应助曾无忧采纳,获得10
7秒前
xiaoxiaoxiao完成签到,获得积分10
7秒前
笨笨山芙完成签到 ,获得积分10
7秒前
8秒前
李爱国应助联合工程采纳,获得10
8秒前
8秒前
顾矜应助Lze采纳,获得10
9秒前
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017