延髓
材料科学
电场
生物医学工程
解剖
神经科学
医学
中枢神经系统
物理
生物
量子力学
作者
Yiqiang Li,Xiangyu Zong,Jiucheng Zhao,Yang Li,Chi Zhang,Hongwei Zhao
出处
期刊:ACS Biomaterials Science & Engineering
[American Chemical Society]
日期:2024-01-05
卷期号:10 (2): 838-850
标识
DOI:10.1021/acsbiomaterials.3c01330
摘要
The development of remote surgery hinges on comprehending the mechanical properties of the tissue at the surgical site. Understanding the mechanical behavior of the medulla oblongata tissue is instrumental for precisely determining the remote surgery implementation site. Additionally, exploring this tissue's response under electric fields can inform the creation of electrical stimulation therapy regimens. This could potentially reduce the extent of medulla oblongata tissue damage from mechanical compression. Various types of pulsed electric fields were integrated into a custom-built indentation device for this study. Experimental findings suggested that applying pulsed electric fields amplified the shear modulus of the medulla oblongata tissue. In the electric field, the elasticity and viscosity of the tissue increased. The most significant influence was noted from the low-frequency pulsed electric field, while the burst pulsed electric field had a minimal impact. At the microstructural scale, the application of an electric field led to the concentration of myelin in areas distant from the surface layer in the medulla oblongata, and the orderly structure of proteoglycans became disordered. The alterations observed in the myelin and proteoglycans under an electric field were considered to be the fundamental causes of the changes in the mechanical behavior of the medulla oblongata tissue. Moreover, cell polarization and extracellular matrix cavitation were observed, with transmission electron microscopy results pointing to laminar separation within the myelin at the ultrastructure scale. This study thoroughly explored the impact of electric field application on the mechanical behavior and microstructure of the medulla oblongata tissue, delving into the underlying mechanisms. This investigation delved into the changes and mechanisms in the mechanical behavior and microstructure of medulla oblongata tissue under the influence of electric fields. Furthermore, this study could serve as a reference for the development of electrical stimulation regimens in the central nervous system. The acquired mechanical behavior data could provide valuable baseline information to aid in the evolution of remote surgery techniques involving the medulla oblongata tissue.
科研通智能强力驱动
Strongly Powered by AbleSci AI