已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Trust in AI with Mitigating Confirmation Bias: Effects of Explanation Type and Debiasing Strategy for Decision-Making with Explainable AI

借记 确认偏差 认知偏差 可信赖性 计算机科学 认知 认知心理学 心理学 人工智能 知识管理 社会心理学 神经科学
作者
Taehyun Ha,Sangyeon Kim
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-12 被引量:2
标识
DOI:10.1080/10447318.2023.2285640
摘要

AbstractWith advancements in artificial intelligence (AI), explainable AI (XAI) has emerged as a promising tool for enhancing the explainability of complex machine learning models. However, the explanations generated by an XAI may lead to cognitive biases among human users. To address this problem, this study aims to investigate how to mitigate users’ cognitive biases based on their individual characteristics. In the literature review, we found two factors that can be helpful in remedying biases: 1) debiasing strategies that have been reported to potentially reduce biases in users’ decision-making via additional information or change in information delivery, and 2) explanation modality types. To examine these factors’ effects, we conducted an experiment with a 4 (debiasing strategy) × 3 (explanation type) between-subject design. In the experiment, participants were exposed to an explainable interface that provides an AI’s outcomes with explanatory information, and their behavioral and attitudinal responses were collected. Specifically, we statistically examined the effects of textual and visual explanations on users’ trust and confirmation bias toward AI systems, considering the moderating effects of debiasing methods and watching time. The results demonstrated that textual explanations lead to higher trust in XAI systems compared to visual explanations. Moreover, we found that textual explanations are particularly beneficial for quick decision-makers to evaluate the outputs of AI systems. Next, the results indicated that the cognitive bias can be effectively mitigated by providing users with a priori information. These findings have theoretical and practical implications for designing AI-based decision support systems that can generate more trustworthy and equitable explanations.Keywords: Artificial intelligenceexplanationtrustsatisfactioncognitive bias Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was supported by the faculty research fund of Sejong University in 2023.Notes on contributorsTaehyun HaTaehyun Ha is an Assistant Professor in the Department of Data Science at Sejong University. His research focuses on Online User Behavior, Human-AI Interaction, and Trust Formation.Sangyeon KimSangyeon Kim is a research professor at the Institute of Engineering Research at Korea University. He received a PhD from the Department of Interaction Science at Sungkyunkwan University in 2022. His research interests include human-computer interaction, gestural interaction, accessible computing, and human-centered AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的问薇完成签到 ,获得积分10
2秒前
赘婿应助Patrick采纳,获得20
2秒前
7秒前
8秒前
8秒前
9秒前
辛勤的泽洋完成签到 ,获得积分10
9秒前
ZoeyD完成签到 ,获得积分10
12秒前
12秒前
d22110652发布了新的文献求助10
14秒前
喷火球完成签到,获得积分10
15秒前
freeaway发布了新的文献求助10
16秒前
圆彰七大完成签到 ,获得积分10
19秒前
24秒前
英俊的铭应助喝杯水再走采纳,获得10
26秒前
cocolu应助BOB采纳,获得10
26秒前
29秒前
依古比古完成签到 ,获得积分10
34秒前
chenchen完成签到,获得积分10
34秒前
888发布了新的文献求助10
36秒前
雷家完成签到,获得积分10
38秒前
44秒前
46秒前
47秒前
47秒前
ding应助彳亍采纳,获得10
50秒前
51秒前
54秒前
活泼啤酒完成签到 ,获得积分10
54秒前
suodeheng发布了新的文献求助220
54秒前
56秒前
tuotuo完成签到 ,获得积分10
56秒前
Patrick发布了新的文献求助20
1分钟前
聪明安白发布了新的文献求助10
1分钟前
1分钟前
剑指东方是为谁应助Karol采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455575
求助须知:如何正确求助?哪些是违规求助? 3050813
关于积分的说明 9022756
捐赠科研通 2739374
什么是DOI,文献DOI怎么找? 1502673
科研通“疑难数据库(出版商)”最低求助积分说明 694583
邀请新用户注册赠送积分活动 693387