Prejudiced against the Machine? Implicit Associations and the Transience of Algorithm Aversion

偏见(法律术语) 潜意识 透视图(图形) 内隐联想测验 隐性偏差 心理学 含蓄的态度 社会心理学 认知心理学 损失厌恶 计算机科学 人工智能 经济 精神分析 微观经济学
作者
Ofir Turel,Shivam Kalhan
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:47 (4): 1369-1394 被引量:7
标识
DOI:10.25300/misq/2022/17961
摘要

Algorithm aversion is an important and persistent issue that prevents harvesting the benefits of advancements in artificial intelligence. The literature thus far has provided explanations that primarily focus on conscious reflective processes. Here, we supplement this view by taking an unconscious perspective that can be highly informative. Building on theories of implicit prejudice, in a preregistered study, we suggest that people develop an implicit bias (i.e., prejudice) against artificial intelligence (AI) systems, as a different and threatening “species,” the behavior of which is unknown. Like in other contexts of prejudice, we expected people to be guided by this implicit bias but try to override it. This leads to some willingness to rely on algorithmic advice (appreciation), which is reduced as a function of people’s implicit prejudice against the machine. Next, building on the somatic marker hypothesis and the accessibility-diagnosticity perspective, we provide an explanation as to why aversion is ephemeral. As people learn about the performance of an algorithm, they depend less on primal implicit biases when deciding whether to rely on the AI’s advice. Two studies (n1 = 675, n2 = 317) that use the implicit association test consistently support this view. Two additional studies (n3 = 255, n4 = 332) rule out alternative explanations and provide stronger support for our assertions. The findings ultimately suggest that moving the needle between aversion and appreciation depends initially on one’s general unconscious bias against AI because there is insufficient information to override it. They further suggest that in later use stages, this shift depends on accessibility to diagnostic information about the AI’s performance, which reduces the weight given to unconscious prejudice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
矮小的乐菱完成签到,获得积分10
2秒前
动听如天完成签到,获得积分10
3秒前
3秒前
识途完成签到,获得积分10
3秒前
sky完成签到 ,获得积分10
3秒前
无花果应助酷炫雅青采纳,获得10
4秒前
zjhzslq发布了新的文献求助10
4秒前
5秒前
sc完成签到,获得积分10
6秒前
寻觅完成签到,获得积分10
6秒前
7秒前
楠桉完成签到,获得积分10
8秒前
9秒前
逆夏发布了新的文献求助20
9秒前
科目三应助风中的马里奥采纳,获得10
10秒前
10秒前
粉煤灰完成签到,获得积分10
10秒前
pingping发布了新的文献求助10
11秒前
12秒前
无语的沛春完成签到,获得积分10
12秒前
12秒前
王木木爱喝周完成签到 ,获得积分10
12秒前
粉煤灰发布了新的文献求助10
14秒前
iufan发布了新的文献求助10
14秒前
tuanheqi应助LXY采纳,获得50
15秒前
胡图图完成签到,获得积分10
16秒前
微笑念薇完成签到,获得积分10
16秒前
木子倪完成签到,获得积分10
16秒前
高贵的小熊猫完成签到,获得积分10
16秒前
万豪发布了新的文献求助10
16秒前
zxvcbnm发布了新的文献求助10
18秒前
失眠书蝶完成签到 ,获得积分10
19秒前
19秒前
hgs完成签到,获得积分10
21秒前
稳重的灵安完成签到,获得积分10
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792