Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag KG]
卷期号:45 (05): 493-500 被引量:6
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助RNNNLL采纳,获得10
1秒前
wanci应助Bin采纳,获得10
1秒前
再炫一袋砂糖橘完成签到 ,获得积分10
1秒前
大气的草莓完成签到,获得积分10
1秒前
3秒前
4秒前
万能图书馆应助贾克斯采纳,获得10
5秒前
潇涯发布了新的文献求助10
7秒前
蓝天应助科研小巴采纳,获得10
7秒前
8秒前
8秒前
优雅咖啡豆完成签到,获得积分10
9秒前
9秒前
戴衡霞完成签到,获得积分10
10秒前
Stella应助高高冰旋采纳,获得10
11秒前
玩命的鹰完成签到,获得积分10
11秒前
852应助yuanyuan采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
bkagyin应助然大宝采纳,获得10
13秒前
傲娇的冷卉完成签到 ,获得积分10
14秒前
14秒前
落水鎏情完成签到 ,获得积分10
14秒前
肖浩翔发布了新的文献求助10
15秒前
哎呀发布了新的文献求助10
17秒前
17秒前
华仔应助积极的老鼠采纳,获得10
17秒前
ahengo完成签到,获得积分10
17秒前
17秒前
2220190143发布了新的文献求助10
18秒前
LaTeXer应助天侠客采纳,获得60
18秒前
血狼旭魔完成签到,获得积分10
19秒前
Hello应助amin采纳,获得10
20秒前
21秒前
可爱的函函应助肖浩翔采纳,获得10
22秒前
小文cremen发布了新的文献求助10
22秒前
wanci应助今夜无人入眠采纳,获得10
23秒前
情怀应助拼搏小懒猪采纳,获得10
23秒前
wanci应助ttt采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599277
求助须知:如何正确求助?哪些是违规求助? 4684870
关于积分的说明 14836779
捐赠科研通 4667525
什么是DOI,文献DOI怎么找? 2537885
邀请新用户注册赠送积分活动 1505359
关于科研通互助平台的介绍 1470776