Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag]
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分10
1秒前
肖肖发布了新的文献求助10
1秒前
JUdy发布了新的文献求助10
1秒前
自己完成签到,获得积分10
2秒前
常芹完成签到,获得积分10
2秒前
kkmedici关注了科研通微信公众号
2秒前
爱听歌的树叶完成签到,获得积分10
3秒前
4秒前
不宁不令完成签到,获得积分10
5秒前
圆滚滚完成签到,获得积分10
6秒前
7秒前
唐_完成签到,获得积分10
8秒前
桐桐应助彳亍而行采纳,获得10
8秒前
9秒前
qiqi发布了新的文献求助10
9秒前
10秒前
JUdy完成签到,获得积分10
11秒前
lll完成签到,获得积分10
12秒前
12秒前
12秒前
小艾完成签到,获得积分10
13秒前
英姑应助含糊采纳,获得10
13秒前
柒月小鱼完成签到 ,获得积分10
13秒前
奋斗雁山发布了新的文献求助10
13秒前
13秒前
14秒前
这样很OK发布了新的文献求助10
14秒前
tay完成签到,获得积分20
17秒前
韦谷兰发布了新的文献求助10
18秒前
QQQ发布了新的文献求助10
18秒前
Bio应助哈哈采纳,获得30
18秒前
19秒前
19秒前
kkmedici发布了新的文献求助30
19秒前
叮咚完成签到,获得积分10
20秒前
不想完成签到,获得积分10
20秒前
这样很OK完成签到,获得积分10
21秒前
GXWFDC完成签到,获得积分10
21秒前
西瓜汁完成签到,获得积分10
21秒前
Lisa完成签到,获得积分20
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028