Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag KG]
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助YOUNG-M采纳,获得10
刚刚
HouShipeng完成签到,获得积分10
1秒前
阿星捌完成签到 ,获得积分10
1秒前
Ava应助qiqi采纳,获得10
1秒前
少年派的奇幻漂流完成签到,获得积分10
1秒前
panpanh完成签到,获得积分10
2秒前
天真的耳机完成签到,获得积分10
2秒前
Orange应助高高万天采纳,获得10
3秒前
卡卡光波完成签到,获得积分10
4秒前
我在人间喝咖啡完成签到,获得积分10
4秒前
留胡子的凌青完成签到,获得积分10
4秒前
简单的张哈哈完成签到,获得积分10
4秒前
孙小雨完成签到,获得积分10
5秒前
幽兰拿铁完成签到,获得积分10
6秒前
ying完成签到 ,获得积分10
6秒前
6秒前
6秒前
suntee发布了新的文献求助30
6秒前
6秒前
Bovey完成签到,获得积分10
7秒前
ming完成签到 ,获得积分20
8秒前
try完成签到,获得积分10
9秒前
lilei完成签到,获得积分10
9秒前
9秒前
三金完成签到,获得积分10
9秒前
Zeeki完成签到 ,获得积分10
11秒前
liuyac发布了新的文献求助10
11秒前
罗元正完成签到 ,获得积分10
11秒前
黑豹完成签到 ,获得积分10
12秒前
Z-先森完成签到,获得积分10
12秒前
13秒前
xinxinqi完成签到 ,获得积分10
13秒前
小石666完成签到,获得积分10
15秒前
qiqi发布了新的文献求助10
15秒前
bc发布了新的文献求助10
16秒前
hty完成签到 ,获得积分10
17秒前
liuyac完成签到,获得积分10
17秒前
努力科研的博士僧完成签到,获得积分10
17秒前
大模型应助阔达的宝莹采纳,获得10
17秒前
丘比特应助Lily采纳,获得30
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147058
求助须知:如何正确求助?哪些是违规求助? 2798385
关于积分的说明 7828457
捐赠科研通 2454989
什么是DOI,文献DOI怎么找? 1306573
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565