Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag KG]
卷期号:45 (05): 493-500 被引量:6
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小任完成签到,获得积分10
1秒前
果粒橙发布了新的文献求助10
1秒前
斯文败类应助麻辣老妖婆采纳,获得10
1秒前
花飞飞凡发布了新的文献求助10
1秒前
温暖静柏完成签到,获得积分20
2秒前
2秒前
科研通AI6应助myt采纳,获得10
2秒前
zhanng发布了新的文献求助10
3秒前
奇遇里发布了新的文献求助10
3秒前
李健的小迷弟应助承乐采纳,获得30
4秒前
小马甲应助Jian采纳,获得10
4秒前
卢秋宇完成签到,获得积分20
5秒前
叶子完成签到,获得积分10
5秒前
瞿琼瑶发布了新的文献求助80
6秒前
6秒前
苦苦发布了新的文献求助10
6秒前
6秒前
7秒前
华仔应助多情以山采纳,获得10
7秒前
奔跑西木发布了新的文献求助10
7秒前
7秒前
雨天有伞完成签到,获得积分10
8秒前
ZOLEI完成签到,获得积分10
8秒前
9秒前
超级万声发布了新的文献求助30
9秒前
执着蓝发布了新的文献求助10
9秒前
迷路巧曼完成签到,获得积分20
10秒前
害羞鬼发布了新的文献求助10
11秒前
11秒前
Giannis完成签到,获得积分20
12秒前
超级翠完成签到,获得积分10
12秒前
hzl发布了新的文献求助10
12秒前
12秒前
Aprilapple发布了新的文献求助10
12秒前
嘎嘎发布了新的文献求助20
13秒前
Echo_枕星完成签到 ,获得积分10
13秒前
直率路人完成签到,获得积分10
13秒前
13秒前
14秒前
王宽宽宽发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836