Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag KG]
卷期号:45 (05): 493-500 被引量:6
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cosy完成签到,获得积分10
刚刚
ee发布了新的文献求助10
刚刚
1秒前
笨笨如之完成签到 ,获得积分10
2秒前
2秒前
高访蕊发布了新的文献求助10
2秒前
2秒前
3秒前
乐乐应助啦啦啦采纳,获得10
3秒前
3秒前
能干储发布了新的文献求助10
3秒前
举人烧烤发布了新的文献求助10
5秒前
cosy发布了新的文献求助10
6秒前
6秒前
科研通AI6应助粗心的从露采纳,获得10
6秒前
7秒前
脑洞疼应助emoji采纳,获得10
7秒前
傲娇剑心完成签到,获得积分20
7秒前
qing_li完成签到,获得积分10
8秒前
感动的铁身关注了科研通微信公众号
9秒前
Satan完成签到,获得积分10
9秒前
11秒前
王钰绮发布了新的文献求助10
11秒前
王欧尼发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
白木子衬完成签到,获得积分10
13秒前
情怀应助刘卿婷采纳,获得10
13秒前
九月完成签到,获得积分10
15秒前
16秒前
简单的可乐完成签到,获得积分10
16秒前
科研通AI6应助哈no采纳,获得10
17秒前
完美世界应助YE采纳,获得10
17秒前
wxn发布了新的文献求助10
17秒前
Ava应助Hinsen采纳,获得10
18秒前
18秒前
伊伊发布了新的文献求助10
19秒前
www111发布了新的文献求助10
20秒前
wxn完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707