Real-time carotid plaque recognition from dynamic ultrasound videos based on artificial neural network

超声波 人工神经网络 人工智能 计算机科学 医学 模式识别(心理学) 计算机视觉 放射科
作者
Wei Yao,Bin Yang,Ling Wei,Jun Xue,Yi‐Cheng Zhu,Jianchu Li,Mingwei Qin,Shuyang Zhang,Qing Dai,Meng Yang
出处
期刊:Ultraschall in Der Medizin [Georg Thieme Verlag KG]
卷期号:45 (05): 493-500 被引量:6
标识
DOI:10.1055/a-2180-8405
摘要

Abstract Purpose Carotid ultrasound allows noninvasive assessment of vascular anatomy and function with real-time display. Based on the transfer learning method, a series of research results have been obtained on the optimal image recognition and analysis of static images. However, for carotid plaque recognition, there are high requirements for self-developed algorithms in real-time ultrasound detection. This study aims to establish an automatic recognition system, Be Easy to Use (BETU), for the real-time and synchronous diagnosis of carotid plaque from ultrasound videos based on an artificial neural network. Materials and Methods 445 participants (mean age, 54.6±7.8 years; 227 men) were evaluated. Radiologists labeled a total of 3259 segmented ultrasound images from 445 videos with the diagnosis of carotid plaque, 2725 images were collected as a training dataset, and 554 images as a testing dataset. The automatic plaque recognition system BETU was established based on an artificial neural network, and remote application on a 5G environment was performed to test its diagnostic performance. Results The diagnostic accuracy of BETU (98.5%) was consistent with the radiologist’s (Kappa = 0.967, P < 0.001). Remote diagnostic feedback based on BETU-processed ultrasound videos could be obtained in 150ms across a distance of 1023 km between the ultrasound/BETU station and the consultation workstation. Conclusion Based on the good performance of BETU in real-time plaque recognition from ultrasound videos, 5G plus Artificial intelligence (AI)-assisted ultrasound real-time carotid plaque screening was achieved, and the diagnosis was made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lca507发布了新的文献求助10
1秒前
1秒前
月亮央于星河完成签到,获得积分10
2秒前
2秒前
娇娇发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Starry发布了新的文献求助10
3秒前
山月发布了新的文献求助10
3秒前
herdwind完成签到,获得积分10
3秒前
玥越发布了新的文献求助10
3秒前
4秒前
4秒前
wantong完成签到,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
gj2221423发布了新的文献求助10
5秒前
6秒前
6秒前
bdfh发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
酷波er应助lijiayi采纳,获得10
7秒前
呆萌的土豆完成签到,获得积分20
7秒前
7秒前
rrrrr发布了新的文献求助10
7秒前
重要的扬完成签到,获得积分10
8秒前
orixero应助布丁仔采纳,获得10
9秒前
9秒前
10秒前
wantong发布了新的文献求助10
10秒前
阿军发布了新的文献求助10
11秒前
故意的小熊猫完成签到,获得积分20
11秒前
何必在乎发布了新的文献求助10
11秒前
彭于晏应助山月采纳,获得10
12秒前
轻风发布了新的文献求助10
12秒前
寒冷书包关注了科研通微信公众号
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711456
求助须知:如何正确求助?哪些是违规求助? 5203871
关于积分的说明 15264340
捐赠科研通 4863728
什么是DOI,文献DOI怎么找? 2610906
邀请新用户注册赠送积分活动 1561227
关于科研通互助平台的介绍 1518627