清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation

计算机科学 人工智能 卷积神经网络 牙科 深度学习 口腔正畸科 模式识别(心理学) 计算机视觉 医学
作者
Kyubaek Yoon,Hye-Min Jeong,Jin‐Woo Kim,Jung‐Hyun Park,Jongeun Choi
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:141: 104821-104821 被引量:4
标识
DOI:10.1016/j.jdent.2023.104821
摘要

In this study, we aimed to integrate tooth number recognition and caries detection in full intraoral photographic images using a cascade region-based deep convolutional neural network (R-CNN) model to facilitate the practical application of artificial intelligence (AI)-driven automatic caries detection in clinical practice. Our dataset comprised 24,578 images, encompassing 4787 upper occlusal, 4347 lower occlusal, 5230 right lateral, 5010 left lateral, and 5204 frontal views. In each intraoral image, tooth numbers and, when present, dental caries, including their location and stage, were annotated using bounding boxes. A cascade R-CNN model was used for dental caries detection and tooth number recognition within intraoral images. For tooth number recognition, the model achieved an average mean average precision (mAP) score of 0.880. In the task of dental caries detection, the model's average mAP score was 0.769, with individual scores spanning from 0.695 to 0.893. The primary objective of integrating tooth number recognition and caries detection within full intraoral photographic images has been achieved by our deep learning model. The model's training on comprehensive intraoral datasets has demonstrated its potential for seamless clinical application. This research holds clinical significance by achieving AI-driven automatic integration of tooth number recognition and caries detection in full intraoral images where multiple teeth are visible. It has the potential to promote the practical application of AI in real-life and clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助百里幻竹采纳,获得10
7秒前
8秒前
123完成签到 ,获得积分10
17秒前
21秒前
百里幻竹发布了新的文献求助10
25秒前
35秒前
Demi_Ming完成签到,获得积分10
38秒前
在水一方应助百里幻竹采纳,获得10
47秒前
53秒前
53秒前
百里幻竹发布了新的文献求助10
59秒前
1分钟前
1分钟前
blm发布了新的文献求助10
1分钟前
1分钟前
1分钟前
英姑应助blm采纳,获得10
1分钟前
华仔应助百里幻竹采纳,获得10
1分钟前
Bella完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
古炮完成签到 ,获得积分10
2分钟前
蚂蚁踢大象完成签到 ,获得积分10
2分钟前
Hello应助百里幻竹采纳,获得10
2分钟前
萝卜仔完成签到 ,获得积分10
2分钟前
藤椒辣鱼应助jyy采纳,获得20
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
4分钟前
打打应助百里幻竹采纳,获得10
4分钟前
4分钟前
百里幻竹发布了新的文献求助10
4分钟前
暴躁的老哥完成签到,获得积分10
4分钟前
慕青应助百里幻竹采纳,获得10
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887