Data- and Model-Driven Crude Oil Supply Risk Assessment of China Considering Maritime Transportation Factors

供应链 系统动力学 风险评估 风险分析(工程) 计算机科学 风险管理 人工神经网络 数据驱动 人工智能 业务 财务 营销 计算机安全
作者
Gangqiao Wang,Qianyu Yin,Ming L. Yu,Jihong Chen
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (1): 52-52
标识
DOI:10.3390/jmse12010052
摘要

Effective supply-chain risk assessment is the basis for developing sustainable supply policies, and it has received growing attention in global oil supply system management. Dynamical modeling and data-driven modeling are two main risk assessment technologies that have been applied in crude oil supply networks. Dynamical risk modeling and data-driven risk modeling offer distinct advantages in capturing the complexities and dynamics of the system. Considering their complementary strengths, a hybrid modeling framework combining system dynamics and data-driven neural networks is proposed for risk assessment of crude oil transportation network. Specifically, the system dynamics module is to capture and interpret the underlying dynamics and mechanisms of the transportation network, while the deep neural networks module is to discover the nonlinear patterns and dependencies of risk factors from various inputs. Based on joint training, the hybrid model can ultimately develop the capability of risk prediction with a small amount of data. In addition, it can consider the dynamic nature of crude oil transportation networks to interpret the predicted results of the risk level for decision-makers to make specific risk-mitigating policies. Extensive experiments based on China’s scenario have been conducted to demonstrate the effectiveness of the proposed hybrid model, and the results show that our model achieves higher accuracy in risk prediction compared to the current state of the art. The results also present an explanation for China’s policy change of building a resilient crude oil transportation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
iaskwho发布了新的文献求助10
3秒前
111完成签到,获得积分10
4秒前
4秒前
DarrenVan完成签到,获得积分10
7秒前
英俊的铭应助lk采纳,获得10
7秒前
lucky完成签到 ,获得积分10
7秒前
王国科发布了新的文献求助10
8秒前
高高的天亦完成签到 ,获得积分10
8秒前
小D发布了新的文献求助10
9秒前
村上春树的摩的完成签到 ,获得积分10
9秒前
Fox完成签到,获得积分20
10秒前
11秒前
一一完成签到 ,获得积分10
11秒前
12秒前
ccm应助科研通管家采纳,获得10
13秒前
Bio应助科研通管家采纳,获得150
13秒前
无花果应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
14秒前
ccm应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
dew应助科研通管家采纳,获得10
14秒前
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
馆长应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
若ruofeng应助科研通管家采纳,获得20
14秒前
今后应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514