Data- and Model-Driven Crude Oil Supply Risk Assessment of China Considering Maritime Transportation Factors

供应链 系统动力学 风险评估 风险分析(工程) 计算机科学 风险管理 人工神经网络 数据驱动 人工智能 业务 财务 营销 计算机安全
作者
Gangqiao Wang,Qianyu Yin,Ming L. Yu,Jihong Chen
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (1): 52-52
标识
DOI:10.3390/jmse12010052
摘要

Effective supply-chain risk assessment is the basis for developing sustainable supply policies, and it has received growing attention in global oil supply system management. Dynamical modeling and data-driven modeling are two main risk assessment technologies that have been applied in crude oil supply networks. Dynamical risk modeling and data-driven risk modeling offer distinct advantages in capturing the complexities and dynamics of the system. Considering their complementary strengths, a hybrid modeling framework combining system dynamics and data-driven neural networks is proposed for risk assessment of crude oil transportation network. Specifically, the system dynamics module is to capture and interpret the underlying dynamics and mechanisms of the transportation network, while the deep neural networks module is to discover the nonlinear patterns and dependencies of risk factors from various inputs. Based on joint training, the hybrid model can ultimately develop the capability of risk prediction with a small amount of data. In addition, it can consider the dynamic nature of crude oil transportation networks to interpret the predicted results of the risk level for decision-makers to make specific risk-mitigating policies. Extensive experiments based on China’s scenario have been conducted to demonstrate the effectiveness of the proposed hybrid model, and the results show that our model achieves higher accuracy in risk prediction compared to the current state of the art. The results also present an explanation for China’s policy change of building a resilient crude oil transportation system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助认真的火采纳,获得10
刚刚
专心搞科研完成签到 ,获得积分10
1秒前
小蚂蚁发布了新的文献求助10
2秒前
机灵的雁蓉完成签到,获得积分10
2秒前
3秒前
顾矜应助ecnu搬砖人采纳,获得30
3秒前
张小完成签到,获得积分10
3秒前
4秒前
嘀嘀嘀发布了新的文献求助10
4秒前
刘生完成签到,获得积分10
5秒前
许子完成签到,获得积分10
6秒前
上官若男应助WN采纳,获得10
6秒前
6秒前
英俊的铭应助冰红茶采纳,获得10
6秒前
魔幻的斑马完成签到,获得积分10
6秒前
daigang发布了新的文献求助10
9秒前
9秒前
斯文败类应助liu采纳,获得10
9秒前
在水一方应助小蚂蚁采纳,获得10
9秒前
Zilong864完成签到,获得积分10
9秒前
11秒前
super chan发布了新的文献求助10
11秒前
11秒前
Lucas应助孤独如曼采纳,获得10
11秒前
11秒前
橙100完成签到,获得积分10
12秒前
摸鱼咯发布了新的文献求助10
13秒前
盼盼小面包完成签到 ,获得积分10
15秒前
知然发布了新的文献求助10
15秒前
16秒前
16秒前
爆米花应助魔幻的斑马采纳,获得10
16秒前
英勇语蓉完成签到,获得积分10
17秒前
行者无疆完成签到,获得积分10
18秒前
盼盼小面包关注了科研通微信公众号
18秒前
19秒前
19秒前
gqz发布了新的文献求助10
20秒前
陈top发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497