Data- and Model-Driven Crude Oil Supply Risk Assessment of China Considering Maritime Transportation Factors

供应链 系统动力学 风险评估 风险分析(工程) 计算机科学 风险管理 人工神经网络 数据驱动 人工智能 业务 财务 计算机安全 营销
作者
Gangqiao Wang,Qianyu Yin,Ming L. Yu,Jihong Chen
出处
期刊:Journal of Marine Science and Engineering [MDPI AG]
卷期号:12 (1): 52-52
标识
DOI:10.3390/jmse12010052
摘要

Effective supply-chain risk assessment is the basis for developing sustainable supply policies, and it has received growing attention in global oil supply system management. Dynamical modeling and data-driven modeling are two main risk assessment technologies that have been applied in crude oil supply networks. Dynamical risk modeling and data-driven risk modeling offer distinct advantages in capturing the complexities and dynamics of the system. Considering their complementary strengths, a hybrid modeling framework combining system dynamics and data-driven neural networks is proposed for risk assessment of crude oil transportation network. Specifically, the system dynamics module is to capture and interpret the underlying dynamics and mechanisms of the transportation network, while the deep neural networks module is to discover the nonlinear patterns and dependencies of risk factors from various inputs. Based on joint training, the hybrid model can ultimately develop the capability of risk prediction with a small amount of data. In addition, it can consider the dynamic nature of crude oil transportation networks to interpret the predicted results of the risk level for decision-makers to make specific risk-mitigating policies. Extensive experiments based on China’s scenario have been conducted to demonstrate the effectiveness of the proposed hybrid model, and the results show that our model achieves higher accuracy in risk prediction compared to the current state of the art. The results also present an explanation for China’s policy change of building a resilient crude oil transportation system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
wwwww发布了新的文献求助10
1秒前
彭于晏应助土豪的忆梅采纳,获得10
1秒前
充电宝应助凤凤采纳,获得10
1秒前
英姑应助陆零采纳,获得10
3秒前
coldspringhao完成签到,获得积分10
5秒前
把的蛮耐得烦完成签到,获得积分10
5秒前
NexusExplorer应助小甘采纳,获得10
6秒前
zhang完成签到,获得积分10
6秒前
Sophist完成签到,获得积分10
8秒前
热心的善愁完成签到,获得积分10
9秒前
经先生发布了新的文献求助10
10秒前
zhou完成签到 ,获得积分10
11秒前
paws完成签到,获得积分10
13秒前
科研通AI2S应助夏青荷采纳,获得10
13秒前
传奇3应助科目三三次郎采纳,获得10
13秒前
voyager完成签到,获得积分10
14秒前
zhang完成签到 ,获得积分10
15秒前
19秒前
JamesPei应助大猫丶采纳,获得10
19秒前
19秒前
西柚应助neil采纳,获得10
20秒前
21秒前
研友_nxV4m8完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
23秒前
笨笨凡松发布了新的文献求助10
23秒前
24秒前
顾北发布了新的文献求助10
24秒前
smile完成签到 ,获得积分20
24秒前
25秒前
26秒前
27秒前
CC发布了新的文献求助10
30秒前
30秒前
小甘发布了新的文献求助10
31秒前
34秒前
在水一方应助蜘蛛抱蛋采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136325
求助须知:如何正确求助?哪些是违规求助? 2787443
关于积分的说明 7781374
捐赠科研通 2443393
什么是DOI,文献DOI怎么找? 1299137
科研通“疑难数据库(出版商)”最低求助积分说明 625359
版权声明 600939