灰质
神经科学
人脑
神经影像学
线粒体
线粒体呼吸链
生物
体素
表型
脑图谱
白质
呼吸链
线粒体DNA
计算生物学
细胞生物学
计算机科学
基因
磁共振成像
医学
遗传学
人工智能
放射科
作者
Eugene V. Mosharov,Ayelet M Rosenberg,Anna S. Monzel,Corey Osto,Linsey Stiles,Gorazd Rosoklija,Andrew J. Dwork,Snehal Bindra,Ya Zhang,Masashi Fujita,Madeline Mariani,Mihran J. Bakalian,David Sulzer,Philip L. De Jager,Vilas Menon,Orian S. Shirihai,J. John Mann,Mark D. Underwood,Maura Boldrini,Michel Thiebaut de Schotten
标识
DOI:10.1101/2024.03.05.583623
摘要
Abstract Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity 1,2 , and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders 3,4 , underscoring the need to define the brain’s molecular energetic landscape 5–10 . To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities 11 , thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI