计算机科学
聊天机器人
医学物理学
考试(生物学)
医学诊断
人工智能
统计
机器学习
医学
数学
放射科
生物
古生物学
作者
Sedat Abuşoğlu,Muhittin Serdar,Ali Ünlü,Gülsüm Abuşoğlu
标识
DOI:10.1515/cclm-2023-1058
摘要
Data generation in clinical settings is ongoing and perpetually increasing. Artificial intelligence (AI) software may help detect data-related errors or facilitate process management. The aim of the present study was to test the extent to which the frequently encountered pre-analytical, analytical, and postanalytical errors in clinical laboratories, and likely clinical diagnoses can be detected through the use of a chatbot.
科研通智能强力驱动
Strongly Powered by AbleSci AI