ARGai 2.0: A Feature Engineering Enabled Deep Network Model for Antibiotic Resistance Gene and Strain Identification in E. coli

鉴定(生物学) 拉伤 特征(语言学) 抗生素耐药性 基因 抗生素 微生物学 计算生物学 遗传学 生物 计算机科学 哲学 语言学 植物 解剖
作者
Debasish Swapnesh Kumar Nayak,Arpita Priyadarshini,Sweta Padma Routray,Santanu Sahoo,Tripti Swarnkar
出处
期刊:International journal of online and biomedical engineering [International Association of Online Engineering]
卷期号:21 (01): 76-96
标识
DOI:10.3991/ijoe.v21i01.52521
摘要

Escherichia coli (E. coli) is a group of bacteria that cause infections in the gastrointestinal (GI) tract and urinary tract (UTIs). The rise in antimicrobial resistance (AMR) due to antibioticresistant genes (ARGs) linked to E. coli strains that cause UTIs poses a significant threat. Identifying ARGs and resistant strains is crucial for effective treatment. To identify ARGs and classify resistant strains in E. coli utilizing gene expression (GE) data with advanced computational techniques such as feature engineering and transfer learning (TL). In TL, knowledge acquired by the baseline model is transferred to the target domain (BI-LSTMGRU). ARGai 2.0 utilizes the Synthetic Minority Over-sampling Technique (SMOTE) for oversampling the GE dataset to evaluate the effectiveness of the proposed TL framework. Our proposed ARGai 2.0 model achieved a higher classification accuracy of 14% compared to 1D CNN and 11% compared to BI-LSTM-GRU individually. The analysis revealed that genes associated with the nitrate reductase operon (narU, narV, narW, narY, and narZ) exhibit high connectivity and interaction scores, indicating their central role in nitrate metabolism. This aligns with the high enrichment FDR of 3.07E-10 and fold enrichment of 229.28 for pathways related to nitrate reductase complex and nitrite transmembrane transporter activity. ARGai 2.0 successfully detected the significant genes responsible for antibiotic resistance and classified the resistant strains. The gene network analysis highlights the central role of nitrate metabolism genes, while peripheral genes like ansP and yncG are involved in more specialized functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助高兴定帮采纳,获得10
1秒前
liszari完成签到,获得积分10
2秒前
iNk应助研友_qZAre8采纳,获得10
2秒前
3秒前
华仔应助Yinya907采纳,获得10
3秒前
许诺完成签到,获得积分10
3秒前
5秒前
7秒前
zhangning发布了新的文献求助10
7秒前
不配.应助yangyang采纳,获得10
8秒前
8秒前
11秒前
乐乐应助july九月采纳,获得10
11秒前
coffee发布了新的文献求助10
12秒前
皑似山上雪完成签到,获得积分10
12秒前
12秒前
12秒前
852应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
clm发布了新的文献求助20
14秒前
不配.应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
深夜诗人完成签到,获得积分10
17秒前
Yinya907发布了新的文献求助10
18秒前
畅快沁完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
优雅莞完成签到,获得积分10
21秒前
shadow完成签到,获得积分10
23秒前
科研通AI2S应助研友_qZAre8采纳,获得10
23秒前
tianugui完成签到,获得积分10
24秒前
24秒前
聪明钢铁侠完成签到,获得积分10
26秒前
栗子发布了新的文献求助20
27秒前
搜集达人应助独特的板凳采纳,获得10
28秒前
28秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3385901
求助须知:如何正确求助?哪些是违规求助? 2999238
关于积分的说明 8784238
捐赠科研通 2684943
什么是DOI,文献DOI怎么找? 1470706
科研通“疑难数据库(出版商)”最低求助积分说明 679921
邀请新用户注册赠送积分活动 672421