已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel operational reliability and state prediction method based on degradation hidden Markov model with random threshold

可靠性(半导体) 可靠性工程 马尔可夫链 计算机科学 马尔可夫模型 降级(电信) 马尔可夫过程 方位(导航) 工程类 人工智能 统计 机器学习 数学 电信 功率(物理) 物理 量子力学
作者
Chenyu Jiang,Qiang Chen,Baimao Lei
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:41 (2): 652-671
标识
DOI:10.1002/qre.3685
摘要

Abstract Bearings are widely used as a common mechanical component and significantly impacts the reliability and safety of various engineering equipment. In the field of large‐scale equipment such as wind turbines, statistical data for reliability and state prediction of bearings is usually limited, leading to the inapplicability of traditional statistical methods. Besides, individual differences commonly exist among bearings, and the appropriate failure threshold for a specific bearing is difficult to be determined due to the individual uncertainty, which may induce prediction errors. To address these issues, a novel operational reliability and state prediction method based on random threshold degradation hidden Markov model was proposed in the study. The traditional hidden Markov model was improved by considering the effect of performance degradation on state transition probability matrix. Moreover, random failure thresholds of performance degradation were employed to describe individual differences between bearings. The operational reliability and state of bearings was obtained by comprehensive analysis of prediction results under different failure thresholds. Verification of the proposed operational reliability and state prediction method were conducted using PHM2012 bearing operation data. The results underscored the effectiveness of the proposed method in achieving a comparatively high accuracy in operational reliability prediction without the prerequisite of an exact failure threshold, when contrasted with several established reliability and life prediction techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mingming发布了新的文献求助10
刚刚
Byron完成签到,获得积分10
1秒前
1秒前
1秒前
Zp关闭了Zp文献求助
3秒前
3秒前
小二郎应助Dr.zhou采纳,获得30
4秒前
RC_Wang应助一个小太阳鸭采纳,获得10
5秒前
5秒前
6秒前
香蕉觅云应助科研小白兔采纳,获得10
7秒前
於松应助lxz采纳,获得20
7秒前
xl发布了新的文献求助50
7秒前
恶恶么v发布了新的文献求助10
7秒前
7秒前
9秒前
怡然乐巧完成签到,获得积分10
9秒前
10秒前
11楼阿水完成签到,获得积分10
11秒前
小王发布了新的文献求助10
11秒前
负责吃饭发布了新的文献求助10
13秒前
斯文败类应助ICE采纳,获得10
13秒前
hqq完成签到,获得积分10
13秒前
Dr.zhou发布了新的文献求助30
14秒前
KYN发布了新的文献求助10
15秒前
慕青应助负责吃饭采纳,获得10
18秒前
深情安青应助哇哈哈哈采纳,获得10
19秒前
Dr.zhou完成签到,获得积分10
21秒前
22秒前
英俊的铭应助董秋白采纳,获得10
25秒前
斯文败类应助MIENIU采纳,获得30
26秒前
KYN完成签到,获得积分10
27秒前
28秒前
英俊的铭应助11楼阿水采纳,获得10
29秒前
热心书易发布了新的文献求助10
30秒前
31秒前
瓷儿发布了新的文献求助10
33秒前
33秒前
1111发布了新的文献求助10
35秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526254
求助须知:如何正确求助?哪些是违规求助? 3106684
关于积分的说明 9281258
捐赠科研通 2804208
什么是DOI,文献DOI怎么找? 1539365
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515