亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring Older Adults’ Perspectives and Acceptance of AI-Driven Health Technologies: Qualitative Study

主题分析 定性研究 医疗保健 新兴技术 感知 卫生技术 心理学 老年学 医学 医学教育 应用心理学 计算机科学 人工智能 社会学 社会科学 神经科学 经济 经济增长
作者
Arkers Kwan Ching Wong,J.H. Lee,Yue Zhao,Qi Lu,Shulan Yang,Vivian Hui
出处
期刊:JMIR aging [JMIR Publications Inc.]
卷期号:8: e66778-e66778
标识
DOI:10.2196/66778
摘要

Abstract Background Artificial intelligence (AI) is increasingly being applied in various health care services due to its enhanced efficiency and accuracy. As the population ages, AI-based health technologies could be a potent tool in older adults’ health care to address growing, complex, and challenging health needs. This study aimed to investigate perspectives on and acceptability of the use of AI-led health technologies among older adults and the potential challenges that they face in adopting them. The findings from this inquiry could inform the designing of more acceptable and user-friendly AI-based health technologies. Objective The objectives of the study were (1) to investigate the attitudes and perceptions of older adults toward the use of AI-based health technologies; (2) to identify potential facilitators, barriers, and challenges influencing older adults’ preferences toward AI-based health technologies; and (3) to inform strategies that can promote and facilitate the use of AI-based health technologies among older adults. Methods This study adopted a qualitative descriptive design. A total of 27 community-dwelling older adults were recruited from a local community center. Three sessions of semistructured interviews were conducted, each lasting 1 hour. The sessions covered five key areas: (1) general impressions of AI-based health technologies; (2) previous experiences with AI-based health technologies; (3) perceptions and attitudes toward AI-based health technologies; (4) anticipated difficulties in using AI-based health technologies and underlying reasons; and (5) willingness, preferences, and motivations for accepting AI-based health technologies. Thematic analysis was applied for data analysis. The Theoretical Domains Framework and the Capability, Opportunity, Motivation, and Behavior (COM-B) model behavior change wheel were integrated into the analysis. Identified theoretical domains were mapped directly to the COM-B model to determine corresponding strategies for enhancing the acceptability of AI-based health technologies among older adults. Results The analysis identified 9 of the 14 Theoretical Domains Framework domains—knowledge, skills, social influences, environmental context and resources, beliefs about capabilities, beliefs about consequences, intentions, goals, and emotion. These domains were mapped to 6 components of the COM-B model. While most participants acknowledged the potential benefits of AI-based health technologies, they emphasized the irreplaceable role of human expertise and interaction. Participants expressed concerns about the usability of AI technologies, highlighting the need for user-friendly and tailored AI solutions. Privacy concerns and the importance of robust security measures were also emphasized as critical factors affecting their willingness to adopt AI-based health technologies. Conclusions Integrating AI as a supportive tool alongside health care providers, rather than regarding it as a replacement, was highlighted as a key strategy for promoting acceptance. Government support and clear guidelines are needed to promote ethical AI implementation in health care. These measures can improve health outcomes in the older adult population by encouraging the adoption of AI-driven health technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一颗饭团完成签到,获得积分20
4秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
18秒前
糖伯虎完成签到 ,获得积分10
23秒前
雷俊鹏发布了新的文献求助10
23秒前
23秒前
whqpeter完成签到,获得积分10
24秒前
whqpeter发布了新的文献求助10
27秒前
科研通AI2S应助雷俊鹏采纳,获得10
29秒前
YH发布了新的文献求助30
30秒前
39秒前
42秒前
43秒前
1分钟前
ysssp完成签到,获得积分10
1分钟前
王先生完成签到 ,获得积分10
1分钟前
曾经的彩虹完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
情怀应助小巧凌晴采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
YH发布了新的文献求助10
2分钟前
Lucas应助YH采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
传奇完成签到 ,获得积分10
3分钟前
善学以致用应助usora采纳,获得10
3分钟前
Georgechan完成签到,获得积分10
3分钟前
李健应助含糊的万宝路采纳,获得10
4分钟前
4分钟前
usora发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422860
求助须知:如何正确求助?哪些是违规求助? 3023243
关于积分的说明 8903870
捐赠科研通 2710624
什么是DOI,文献DOI怎么找? 1486610
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330