Extracting the Young's Modulus of Native Murine Pulmonary Basement Membranes from Atomic Force Microscopy derived Force Maps

原子力显微镜 基底膜 显微镜 生物物理学 模数 材料科学 化学 生物 纳米技术 细胞生物学 病理 复合材料 医学 生物化学
作者
Bastian Hartmann,Monica Nicolau,Raphael Reuten,Hauke Clausen‐Schaumann
出处
期刊:Journal of Visualized Experiments [MyJOVE]
卷期号: (215)
标识
DOI:10.3791/67784
摘要

Atomic force microscopy (AFM) allows the characterization of the mechanical properties of a sample with a spatial resolution of several tens of nanometers. Because mammalian cells sense and react to the mechanics of their immediate microenvironment, the characterization of biomechanical properties of tissues with high spatial resolution is crucial for understanding various developmental, homeostatic, and pathological processes. The basement membrane (BM), a roughly 100 - 400 nm thin extracellular matrix (ECM) substructure, plays a significant role in tumor progression and metastasis formation. Although determining Young's modulus of such a thin ECM substructure is challenging, biomechanical data of the BM provides fundamental new insights into how the BM affects cell behavior and, in addition, offers valuable diagnostic potential. Here, we present a visualized protocol for assessing BM mechanics in murine lung tissue, which is one of the major organs prone to metastasis. We describe an efficient workflow for determining the Young's modulus of the BM, which is located between the endothelial and epithelial cell layers in lung tissue. The step-by-step instructions comprise murine lung tissue freezing, cryosectioning, and AFM force-map recording on tissue sections. Additionally, we provide a semi-automatic data analysis procedure using the CANTER Processing Toolbox, an in-house developed user-friendly AFM data analysis software. This tool enables automatic loading of recorded force maps, conversion of force versus piezo-extension curves to force versus indentation curves, computation of Young's moduli, and generation of Young's modulus maps. Finally, it shows how to determine and isolate Young's modulus values derived from the pulmonary BM through the use of a spatial filtering tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AATRAHASIS完成签到,获得积分10
2秒前
一只小小发布了新的文献求助30
2秒前
沙111完成签到 ,获得积分10
2秒前
淬h发布了新的文献求助10
2秒前
5秒前
5秒前
沙青梦发布了新的文献求助10
7秒前
Lei完成签到,获得积分20
8秒前
8秒前
perdgs完成签到,获得积分10
9秒前
思源应助xiaoxiao采纳,获得10
9秒前
傲娇芷蝶完成签到 ,获得积分10
9秒前
小闵完成签到,获得积分10
10秒前
momo关注了科研通微信公众号
10秒前
bodhi完成签到,获得积分10
11秒前
12秒前
啾啾发布了新的文献求助10
12秒前
FashionBoy应助付创采纳,获得10
13秒前
13秒前
14秒前
简单灵凡发布了新的文献求助10
14秒前
djh发布了新的文献求助10
14秒前
15秒前
常尽欢发布了新的文献求助10
16秒前
17秒前
aiiLuX发布了新的文献求助20
17秒前
17秒前
奋斗灵波完成签到,获得积分10
18秒前
小王爱看文献完成签到 ,获得积分10
18秒前
33LL完成签到,获得积分10
18秒前
Ruiruirui发布了新的文献求助10
18秒前
动漫大师发布了新的文献求助10
19秒前
万能图书馆应助czc采纳,获得10
20秒前
英俊的铭应助谁家那小谁采纳,获得10
20秒前
淡然的冰安完成签到,获得积分10
20秒前
20秒前
Buduan完成签到,获得积分10
20秒前
何木萧完成签到,获得积分10
21秒前
LmY大帅比完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737713
求助须知:如何正确求助?哪些是违规求助? 3281328
关于积分的说明 10024815
捐赠科研通 2998078
什么是DOI,文献DOI怎么找? 1645034
邀请新用户注册赠送积分活动 782506
科研通“疑难数据库(出版商)”最低求助积分说明 749814