已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning

强化学习 任务(项目管理) 机器人 计算机科学 钢筋 人工智能 工程类 结构工程 系统工程
作者
Feng Xie,Zhengwei Guo,Tao Li,Qingchun Feng,Chunjiang Zhao
出处
期刊:Horticulturae [MDPI AG]
卷期号:11 (1): 88-88
标识
DOI:10.3390/horticulturae11010088
摘要

Global fruit production costs are increasing amid intensified labor shortages, driving heightened interest in robotic harvesting technologies. Although multi-arm coordination in harvesting robots is considered a highly promising solution to this issue, it introduces technical challenges in achieving effective coordination. These challenges include mutual interference among multi-arm mechanical structures, task allocation across multiple arms, and dynamic operating conditions. This imposes higher demands on task coordination for multi-arm harvesting robots, requiring collision-free collaboration, optimization of task sequences, and dynamic re-planning. In this work, we propose a framework that models the task planning problem of multi-arm operation as a Markov game. First, considering multi-arm cooperative movement and picking sequence optimization, we employ a two-agent Markov game framework to model the multi-arm harvesting robot task planning problem. Second, we introduce a self-attention mechanism and a centralized training and execution strategy in the design and training of our deep reinforcement learning (DRL) model, thereby enhancing the model’s adaptability in dynamic and uncertain environments and improving decision accuracy. Finally, we conduct extensive numerical simulations in static environments; when the harvesting targets are set to 25 and 50, the execution time is reduced by 10.7% and 3.1%, respectively, compared to traditional methods. Additionally, in dynamic environments, both operational efficiency and robustness are superior to traditional approaches. The results underscore the potential of our approach to revolutionize multi-arm harvesting robotics by providing a more adaptive and efficient task planning solution. We will research improving the positioning accuracy of fruits in the future, which will make it possible to apply this framework to real robots.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dailj发布了新的文献求助10
1秒前
唐新惠完成签到 ,获得积分10
4秒前
Wu完成签到,获得积分10
4秒前
一辰不染完成签到,获得积分10
5秒前
追寻的纸鹤完成签到 ,获得积分10
5秒前
清秋夜露白完成签到,获得积分10
6秒前
7秒前
丰富的灭绝完成签到 ,获得积分10
9秒前
风清扬应助古猫宁采纳,获得10
9秒前
loii完成签到,获得积分10
10秒前
8888发布了新的文献求助10
12秒前
左转发布了新的文献求助10
13秒前
哈哈完成签到,获得积分10
14秒前
鳗鱼黑米发布了新的文献求助10
23秒前
科研通AI2S应助zhu采纳,获得10
25秒前
Dylan完成签到 ,获得积分10
27秒前
共享精神应助大力的图图采纳,获得10
28秒前
左转完成签到,获得积分10
28秒前
DD完成签到 ,获得积分10
31秒前
刻苦的幻巧完成签到 ,获得积分10
31秒前
丸子完成签到 ,获得积分10
32秒前
程住气完成签到 ,获得积分10
35秒前
与光完成签到 ,获得积分10
37秒前
天天只会睡大觉完成签到 ,获得积分10
38秒前
yangzai完成签到 ,获得积分0
38秒前
充电宝应助左转采纳,获得10
38秒前
眰晌完成签到 ,获得积分10
39秒前
muliushang完成签到 ,获得积分10
40秒前
yanzilin完成签到 ,获得积分10
42秒前
酷波er应助平平无奇采纳,获得10
46秒前
tzy关闭了tzy文献求助
52秒前
沫清川完成签到,获得积分10
55秒前
Lucas应助幽默书瑶采纳,获得10
56秒前
林林宁宁完成签到 ,获得积分10
57秒前
QQ完成签到 ,获得积分10
58秒前
kbcbwb2002完成签到,获得积分0
59秒前
59秒前
华仔应助木卫二采纳,获得10
1分钟前
沫清川发布了新的文献求助10
1分钟前
FashionBoy应助高源伯采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875385
求助须知:如何正确求助?哪些是违规求助? 6516066
关于积分的说明 15676950
捐赠科研通 4993314
什么是DOI,文献DOI怎么找? 2691433
邀请新用户注册赠送积分活动 1633718
关于科研通互助平台的介绍 1591362