Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning

强化学习 任务(项目管理) 机器人 计算机科学 钢筋 人工智能 工程类 结构工程 系统工程
作者
Feng Xie,Zhengwei Guo,Tao Li,Qingchun Feng,Chunjiang Zhao
出处
期刊:Horticulturae [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 88-88
标识
DOI:10.3390/horticulturae11010088
摘要

Global fruit production costs are increasing amid intensified labor shortages, driving heightened interest in robotic harvesting technologies. Although multi-arm coordination in harvesting robots is considered a highly promising solution to this issue, it introduces technical challenges in achieving effective coordination. These challenges include mutual interference among multi-arm mechanical structures, task allocation across multiple arms, and dynamic operating conditions. This imposes higher demands on task coordination for multi-arm harvesting robots, requiring collision-free collaboration, optimization of task sequences, and dynamic re-planning. In this work, we propose a framework that models the task planning problem of multi-arm operation as a Markov game. First, considering multi-arm cooperative movement and picking sequence optimization, we employ a two-agent Markov game framework to model the multi-arm harvesting robot task planning problem. Second, we introduce a self-attention mechanism and a centralized training and execution strategy in the design and training of our deep reinforcement learning (DRL) model, thereby enhancing the model’s adaptability in dynamic and uncertain environments and improving decision accuracy. Finally, we conduct extensive numerical simulations in static environments; when the harvesting targets are set to 25 and 50, the execution time is reduced by 10.7% and 3.1%, respectively, compared to traditional methods. Additionally, in dynamic environments, both operational efficiency and robustness are superior to traditional approaches. The results underscore the potential of our approach to revolutionize multi-arm harvesting robotics by providing a more adaptive and efficient task planning solution. We will research improving the positioning accuracy of fruits in the future, which will make it possible to apply this framework to real robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
叫我魔王大人关注了科研通微信公众号
1秒前
orixero应助科研通管家采纳,获得30
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
实验好难应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
kingwill应助科研通管家采纳,获得20
1秒前
实验好难应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
我是老大应助甜橙采纳,获得10
1秒前
2以李完成签到,获得积分10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得50
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
疯狂的乌发布了新的文献求助10
3秒前
浮华应助找找采纳,获得10
4秒前
77发布了新的文献求助10
5秒前
科研通AI5应助zain采纳,获得10
5秒前
yao完成签到,获得积分10
6秒前
7秒前
ding应助景色采纳,获得10
7秒前
7秒前
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737910
求助须知:如何正确求助?哪些是违规求助? 3281470
关于积分的说明 10025533
捐赠科研通 2998170
什么是DOI,文献DOI怎么找? 1645135
邀请新用户注册赠送积分活动 782612
科研通“疑难数据库(出版商)”最低求助积分说明 749843