BP3: Improving Cuff-less Blood Pressure Monitoring Performance by Fusing mmWave Pulse Wave Sensing and Physiological Factors

计算机科学 脉搏波分析 血压 远程病人监护 脉搏(音乐) 环境科学 遥感 脉冲波速 医学 电信 地质学 内科学 探测器 放射科
作者
Zixin Zheng,Yumeng Liang,Rui Lyu,Bao Junjie,Yan-Chu Huang,Anfu Zhou,Huadóng Ma,Jingjia Wang,Xiangbin Meng,Chunli Shao,Yi-Da Tang,Qian Zhang
标识
DOI:10.1145/3666025.3699370
摘要

Cuff-less methods, especially pulse wave analysis (PWA) techniques with PPG/mmWave sensing, have shown great potential for non-intrusive blood pressure (BP) monitoring. However, the state-of-the-art solutions are only validated on small-scale healthy subjects, neglecting patients with abnormal BP and thus a more urgent need for BP monitoring. To bridge the gap, we first build the largest mmWave-BP dataset to our knowledge, including 930 real patients with cardiovascular diseases, and perform extensive experiments, which reveals that all existing PWA methods exhibit far less satisfactory performance with standard deviation errors (STD) exceeding 16 mmHg for systolic BP (SBP) and 11mmHg for diastolic BP (DBP). An in-depth investigation shows that physiological factors have complex effect on vascular elasticity and structure, thus people with very different BP values may exhibit extremely similar pulse waveform, which leads to confusion in model learning. In this work, we propose BP3, which fuses physiological factors into sensing-data-driven deep-learning framework, so as to capture the intricate effect of physiological factors during the whole process of learning pulse waveforms. Evaluation results show that BP3 achieves the mean errors of-1.57 mmHg and -0.34 mmHg, STD of 9.77 mmHg and 7.93 mmHg for SBP and DBP, respectively. Moreover importantly, BP3 shows remarkable gain particularly for subjects with abnormal BP, achieving mean errors that are only 0.48% ~ 20.86% of the state-of-the-art solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助斯文黎云采纳,获得10
刚刚
通~发布了新的文献求助10
1秒前
qifeng完成签到,获得积分10
1秒前
屹舟发布了新的文献求助10
1秒前
宇文数学完成签到 ,获得积分10
2秒前
2秒前
爆米花应助大方嵩采纳,获得10
2秒前
姚文超发布了新的文献求助10
3秒前
3秒前
自由的寒香完成签到 ,获得积分10
3秒前
研友_LJQ4o8完成签到,获得积分10
4秒前
lkc发布了新的文献求助10
4秒前
4秒前
雨辰完成签到,获得积分10
4秒前
卫卫完成签到 ,获得积分10
4秒前
5秒前
现代剑成完成签到,获得积分10
6秒前
杨耑耑完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
jijahui完成签到,获得积分10
7秒前
帅气惜霜发布了新的文献求助10
7秒前
7秒前
马静雨发布了新的文献求助10
8秒前
李健应助聪明可爱小绘理采纳,获得10
8秒前
小田心完成签到,获得积分10
8秒前
虚心的幻翠完成签到 ,获得积分10
8秒前
潇洒的冷玉完成签到 ,获得积分10
8秒前
星辰大海应助szmsnail采纳,获得20
9秒前
小黄应助清欢采纳,获得10
9秒前
10秒前
10秒前
华清引发布了新的文献求助30
10秒前
jijahui发布了新的文献求助10
10秒前
11秒前
sweetbearm应助通~采纳,获得10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794