BP3: Improving Cuff-less Blood Pressure Monitoring Performance by Fusing mmWave Pulse Wave Sensing and Physiological Factors

计算机科学 脉搏波分析 血压 远程病人监护 脉搏(音乐) 环境科学 遥感 脉冲波速 医学 电信 地质学 内科学 探测器 放射科
作者
Zixin Zheng,Yumeng Liang,Rui Lyu,Bao Junjie,Yan-Chu Huang,Anfu Zhou,Huadóng Ma,Jingjia Wang,Xiangbin Meng,Chunli Shao,Yi-Da Tang,Qian Zhang
标识
DOI:10.1145/3666025.3699370
摘要

Cuff-less methods, especially pulse wave analysis (PWA) techniques with PPG/mmWave sensing, have shown great potential for non-intrusive blood pressure (BP) monitoring. However, the state-of-the-art solutions are only validated on small-scale healthy subjects, neglecting patients with abnormal BP and thus a more urgent need for BP monitoring. To bridge the gap, we first build the largest mmWave-BP dataset to our knowledge, including 930 real patients with cardiovascular diseases, and perform extensive experiments, which reveals that all existing PWA methods exhibit far less satisfactory performance with standard deviation errors (STD) exceeding 16 mmHg for systolic BP (SBP) and 11mmHg for diastolic BP (DBP). An in-depth investigation shows that physiological factors have complex effect on vascular elasticity and structure, thus people with very different BP values may exhibit extremely similar pulse waveform, which leads to confusion in model learning. In this work, we propose BP3, which fuses physiological factors into sensing-data-driven deep-learning framework, so as to capture the intricate effect of physiological factors during the whole process of learning pulse waveforms. Evaluation results show that BP3 achieves the mean errors of-1.57 mmHg and -0.34 mmHg, STD of 9.77 mmHg and 7.93 mmHg for SBP and DBP, respectively. Moreover importantly, BP3 shows remarkable gain particularly for subjects with abnormal BP, achieving mean errors that are only 0.48% ~ 20.86% of the state-of-the-art solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助ajhs采纳,获得30
刚刚
吃不饱星球球长应助zzzzzz采纳,获得30
1秒前
蓝桉树完成签到,获得积分10
1秒前
1秒前
cyj发布了新的文献求助20
1秒前
2秒前
竹外桃花发布了新的文献求助10
3秒前
zm完成签到,获得积分10
4秒前
lalalala发布了新的文献求助10
5秒前
aqua_xin完成签到,获得积分0
6秒前
啦啦啦啦发布了新的文献求助10
6秒前
哈哈哈哈完成签到,获得积分20
6秒前
aaa发布了新的文献求助10
6秒前
7秒前
7秒前
香蕉觅云应助LQ采纳,获得10
8秒前
9秒前
阔达的夏云完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
哈哈哈哈发布了新的文献求助10
10秒前
11秒前
杨阳洋完成签到,获得积分10
12秒前
lucky完成签到 ,获得积分10
12秒前
猪猪侠发布了新的文献求助10
13秒前
小马甲应助南浔采纳,获得10
13秒前
13秒前
小董不懂发布了新的文献求助10
14秒前
mingjie发布了新的文献求助10
14秒前
陈牛逼发布了新的文献求助10
15秒前
木木完成签到 ,获得积分10
15秒前
Eleanor驳回了Lucas应助
15秒前
15秒前
zfh发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
18秒前
漠尘完成签到,获得积分10
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222582
求助须知:如何正确求助?哪些是违规求助? 2871280
关于积分的说明 8174713
捐赠科研通 2538283
什么是DOI,文献DOI怎么找? 1370395
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619592