已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CBCT projection domain metal segmentation for metal artifact reduction using hessian-inspired dual-encoding network with guidance from segment anything model.

黑森矩阵 工件(错误) 编码(内存) 投影(关系代数) 分割 人工智能 还原(数学) 领域(数学分析) 医学影像学 对偶(语法数字) 计算机视觉 计算机科学 算法 数学 几何学 艺术 数学分析 文学类 应用数学
作者
Chen Jiang,Tianling Lyu,Gege Ma,Zhan Wu,Xinyun Zhong,Yan Xi,Yang Chen,Wentao Zhu
出处
期刊:PubMed
标识
DOI:10.1002/mp.17716
摘要

Metal artifact is a prevailing factor reducing the image quality of cone-beam computed tomography (CBCT), which is a widely used medical imaging method. Existing metal artifact reduction (MAR) methods typically contain two steps: segmentation and interpolation. Recent MAR algorithms pay more attention to the interpolation of the metal traces, but metal segmentation is also challenging, especially for CBCT. Despite the success of deep learning (DL) in image segmentation, the substantial expense associated with annotating metal traces in the projection domain makes most of these approaches impractical for this task. In this paper, we aim to provide a workflow for DL-based metal-trace segmentation without manually delineated ground truth. We propose a Hessian-inspired dual-encoding network (HIDE-Net) for CBCT projection-domain metal segmentation with guidance from the segment anything model. Specifically, a Hessian eigenvalue module is designed to incorporate human knowledge about the target metal objects; a dual encoder is designed to better extract marginal information; and an input enhancement module is proposed to enhance the projection domain input for better segmentation. Finally, a SAM-based label preprocessing module is investigated to obtain the training label automatically. The proposed method has been tested on both digital phantom data and clinical CBCT data. Experiments on both datasets demonstrate the efficacy of the proposed method. HIDE-Net achieves improved metal segmentation accuracy than recent segmentation-oriented CNN models. Compared with existing MAR algorithms, the proposed method improves Dice index in projection domain by 3.2 %$\%$ , and the RMSE in image domain is reduced by 42 %$\%$ . The proposed methods would advance MAR techniques in CBCT and have the potential to push forward the use of intraoperative CBCT in human-handed and robotic-assisted MISS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yiers完成签到,获得积分20
刚刚
阿牛奶发布了新的文献求助10
1秒前
1秒前
疯狂喵完成签到 ,获得积分10
3秒前
4秒前
max发布了新的文献求助10
5秒前
传奇3应助stacy采纳,获得10
6秒前
Persist完成签到 ,获得积分10
6秒前
喷火龙发布了新的文献求助10
8秒前
不灭发布了新的文献求助10
8秒前
高山七石完成签到,获得积分10
8秒前
Aguan完成签到,获得积分20
8秒前
阿牛奶完成签到,获得积分10
8秒前
celine发布了新的文献求助10
9秒前
11秒前
打打应助Yiers采纳,获得30
12秒前
月光完成签到 ,获得积分10
13秒前
识趣发布了新的文献求助10
15秒前
自然完成签到,获得积分10
16秒前
研友_ZG4ml8完成签到 ,获得积分10
16秒前
领导范儿应助天呐aaa采纳,获得10
17秒前
喷火龙完成签到,获得积分20
18秒前
小蘑菇应助OPO采纳,获得10
19秒前
Yao发布了新的文献求助10
20秒前
celine完成签到,获得积分10
20秒前
21秒前
22秒前
23秒前
MeSs完成签到 ,获得积分10
23秒前
26秒前
Dora发布了新的文献求助10
27秒前
29秒前
30秒前
30秒前
32秒前
识趣完成签到,获得积分10
32秒前
32秒前
悦耳的黑米完成签到,获得积分10
32秒前
Dora完成签到,获得积分10
33秒前
阳光发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526413
求助须知:如何正确求助?哪些是违规求助? 3106815
关于积分的说明 9281607
捐赠科研通 2804333
什么是DOI,文献DOI怎么找? 1539426
邀请新用户注册赠送积分活动 716552
科研通“疑难数据库(出版商)”最低求助积分说明 709520