Intelligent Traffic Monitoring with Distributed Acoustic Sensing

分布式声传感 声传感器 地质学 计算机科学 环境科学 声学 电信 物理 光纤传感器 光纤
作者
Dongzi Xie,Xinming Wu,Zhixiang Guo,Heting Hong,Baoshan Wang,Yingjiao Rong
出处
期刊:Seismological Research Letters [Seismological Society of America]
标识
DOI:10.1785/0220240298
摘要

Abstract Distributed acoustic sensing (DAS) is promising for traffic monitoring, but its extensive data and sensitivity to vibrations, causing noise, pose computational challenges. To address this, we propose a two-step deep learning workflow with high efficiency and noise immunity for DAS-based traffic monitoring, focusing on instance vehicle trajectory segmentation and velocity estimation. Our approach begins by generating a diverse synthetic DAS dataset with labeled vehicle signals, tackling the issue of missing training labels in this field. This dataset is used to train a convolutional neural network (CNN) to detect linear vehicle trajectories from the noisy DAS data in the time–space domain. However, due to significant noise, these trajectories are often fragmented and incomplete. To enhance accuracy, we introduce a second step involving the Hough transform. This converts detected linear features into point-like energy clusters in the Hough domain. Another CNN is then employed to focus on these energies, identifying the most significant points. The inverse Hough transform is applied to these points to reconstruct complete, distinct, and noise-free linear vehicle trajectories in the time–space domain. The Hough transform plays a crucial role by enforcing a local linearity constraint on the trajectories, enhancing continuity and noise immunity, and facilitating the separation of individual trajectories and estimation of vehicle velocities (indicated by trajectory slopes in the Hough domain). Our method has shown effectiveness in real-world datasets, proving its value in real-time processing of DAS data and applicability in similar traffic monitoring scenarios. All related codes and data are available in the Data and Resources section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_LN3xyn发布了新的文献求助10
6秒前
8秒前
9秒前
烟花应助100采纳,获得10
10秒前
hgf应助pophoo采纳,获得10
13秒前
海盗船长完成签到,获得积分10
13秒前
14秒前
洛洛发布了新的文献求助10
14秒前
迅速的花生完成签到,获得积分10
15秒前
进击的研狗完成签到 ,获得积分10
18秒前
洛洛完成签到,获得积分10
21秒前
valorb完成签到,获得积分0
21秒前
22秒前
23秒前
科研通AI5应助独特的大船采纳,获得10
26秒前
狂看文献完成签到,获得积分10
26秒前
am完成签到,获得积分10
27秒前
落樱幻梦染星尘完成签到,获得积分10
28秒前
JamesPei应助迅速的花生采纳,获得10
28秒前
29秒前
Qiqinnn完成签到 ,获得积分10
32秒前
Owen应助超帅怜阳采纳,获得10
33秒前
38秒前
sun完成签到,获得积分10
41秒前
43秒前
芜湖起飞完成签到 ,获得积分10
45秒前
lbx完成签到,获得积分10
45秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
英俊的铭应助科研通管家采纳,获得10
51秒前
51秒前
51秒前
共享精神应助科研通管家采纳,获得10
51秒前
迟大猫应助科研通管家采纳,获得10
51秒前
乐乐应助科研通管家采纳,获得10
51秒前
崔宁宁完成签到 ,获得积分10
52秒前
52秒前
超帅怜阳发布了新的文献求助10
53秒前
飘飘完成签到 ,获得积分10
55秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717