清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

LM-PROTAC: a language model-driven PROTAC generation pipeline with dual constraints of structure and property

财产(哲学) 管道(软件) 对偶(语法数字) 计算机科学 程序设计语言 语言学 哲学 认识论
作者
Li Wang,Jinsong Shao,Qiang Gong,Zeyu Yin,Yu Chen,Yajie Hao,Lei Zhang,Linlin Jiang,Min Yao,Jinlong Li,Fubo Wang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-6356959/v1
摘要

Abstract The imperfect modeling of ternary complexes has limited the application of computer-aided drug discovery tools in PROTAC research and development. In this study, a language model for PROTAC molecule design pipeline named LM-PROTAC was developed, which stands for language model-driven Proteolysis Targeting Chimera, by embedding a transformer-based generative model with dual constraints on structure and properties. This study started with the idea of segmentation and representation of molecules and protein. Firstly, a language model-driven affinity model for protein compounds to screen molecular fragments with high affinity for the target protein. Secondly, structural and physicochemical properties of these fragments were constrained during the generation process to meet specific scenario requirements. Finally, a two-round screening was performed on the preliminary generated molecules using a multidimensional property prediction model. This process identified a batch of PROTAC molecules capable of degrading disease-relevant target proteins. These molecules were subsequently validated through in vitro experiments, thus providing a complete solution for language model-driven PROTAC drug generation. Taking Wnt3a, a key tumor-related target, as a POI of degradation, the LM-PROTAC pipeline successfully generated effective PROTAC molecules. The molecular distribution experiments demonstrated the high similarity of the generated molecules to the original dataset, validating the generative model’s effectiveness in accurately defining chemical space. Molecular dynamics simulations confirmed the stable interactions between the PROTAC molecules and target proteins, while protein degradation experiments verified the efficacy of the generated PROTAC molecules in degrading target proteins. The entire LM-PROTAC pipeline is reusable and can generate degraders for other target proteins within 50 days, significantly improving the efficiency of drug discovery for undruggable targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小耿完成签到 ,获得积分10
4秒前
顾矜应助llyy采纳,获得20
19秒前
tianshanfeihe完成签到 ,获得积分10
21秒前
xkhxh完成签到 ,获得积分10
25秒前
谭小仙儿完成签到 ,获得积分10
29秒前
十二完成签到 ,获得积分10
30秒前
charih完成签到 ,获得积分10
31秒前
糊涂的青烟完成签到 ,获得积分10
32秒前
忆茶戏完成签到 ,获得积分10
36秒前
41秒前
huazhangchina完成签到 ,获得积分10
43秒前
llyy发布了新的文献求助20
48秒前
kalani完成签到,获得积分10
50秒前
wBw完成签到,获得积分10
53秒前
yunxiao完成签到 ,获得积分10
59秒前
西山菩提完成签到,获得积分10
59秒前
CHEN完成签到 ,获得积分10
59秒前
玉鱼儿完成签到 ,获得积分10
1分钟前
二世小卒完成签到 ,获得积分10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
红箭烟雨完成签到,获得积分10
1分钟前
深情的起眸完成签到,获得积分10
1分钟前
失眠的香蕉完成签到 ,获得积分10
1分钟前
贰鸟应助科研通管家采纳,获得20
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
修水县1个科研人完成签到 ,获得积分10
2分钟前
xiaozou55完成签到 ,获得积分10
2分钟前
2分钟前
panpan111发布了新的文献求助10
2分钟前
Whassupww完成签到,获得积分10
2分钟前
仙女完成签到 ,获得积分10
2分钟前
科科通通完成签到,获得积分10
2分钟前
dent强完成签到 ,获得积分10
2分钟前
2分钟前
曾经不言完成签到 ,获得积分10
2分钟前
SH123完成签到 ,获得积分10
3分钟前
田様应助乐观之瑶采纳,获得10
3分钟前
阔达代芹完成签到 ,获得积分10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Maneuvering of a Damaged Navy Combatant 650
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770483
求助须知:如何正确求助?哪些是违规求助? 3315488
关于积分的说明 10176495
捐赠科研通 3030532
什么是DOI,文献DOI怎么找? 1663002
邀请新用户注册赠送积分活动 795258
科研通“疑难数据库(出版商)”最低求助积分说明 756705