The secondary aqueous zinc-manganese battery

阳极 电化学 分离器(采油) 水溶液 电化学窗口 阴极 电解质 电池(电) 材料科学 钝化 无机化学 电偶阳极 化学工程 电极 化学 冶金 纳米技术 有机化学 阴极保护 图层(电子) 功率(物理) 物理化学 离子电导率 工程类 物理 热力学 量子力学
作者
Qihang Dai,Longyan Li,Tuan K.A. Hoang,Tiancheng Tu,Bingjie Hu,Yiyang Jia,Ming‐Dao Zhang,Li Song,Michel L. Trudeau
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:55: 105397-105397 被引量:28
标识
DOI:10.1016/j.est.2022.105397
摘要

Secondary aqueous zinc-ion batteries have been widely investigated recently due to their high energy density, low-cost, and environmental friendliness, compared to organic batteries. Zinc based batteries still have unstable cycle performance, especially at a low current density, which usually presents severe declination of the specific capacity during cycling. Thus, it is important to improve the electrochemical performance of the secondary aqueous zinc-ion batteries in order to broaden their applications. The electrode materials are among the key factors that influence the electrochemical performance of batteries. On the cathode side, manganese oxides have been widely applied because they have a high theoretical specific capacity. Moreover, they can be conveniently prepared or obtained from natural minerals. However, the mechanism of these cathode materials in the aqueous electrolyte is still not clear, hindering the effective improvement of their electrochemical performance. The zinc anode of the zinc-ion batteries also suffers from the hydrogen evolution, the dendrite formation, and surface passivation. Plus, there are issues such as the decomposition of water, narrow operating temperature and electrochemical stable window, involved in the aqueous electrolyte due to the intrinsic properties of water. These drawbacks seriously affect the cycle stability and the service life of the battery. Herein, the application and the mechanism of different manganese oxides, the investigation of the zinc anode, the aqueous electrolyte, and the effect of separator in the secondary aqueous zinc batteries are reviewed. Furthermore, the future prospects of this system are elaborated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助MutantKitten采纳,获得10
1秒前
菘蓝泽蓼完成签到,获得积分10
2秒前
jpc完成签到 ,获得积分10
5秒前
7秒前
冷傲的无剑完成签到,获得积分10
8秒前
有心事的风景完成签到,获得积分20
8秒前
8秒前
9秒前
懵懂完成签到,获得积分10
9秒前
静然完成签到 ,获得积分10
11秒前
今我来思完成签到 ,获得积分10
11秒前
小杨发布了新的文献求助10
11秒前
天狗屯月完成签到,获得积分10
12秒前
雨天完成签到,获得积分10
12秒前
领导范儿应助大小姐采纳,获得10
12秒前
羽宇发布了新的文献求助10
13秒前
豆豆发布了新的文献求助10
14秒前
曾经的凤发布了新的文献求助10
15秒前
小西完成签到 ,获得积分10
17秒前
17秒前
科研通AI5应助朝朝采纳,获得10
18秒前
19秒前
20秒前
20秒前
科研通AI2S应助Suki采纳,获得10
22秒前
22秒前
瘦瘦心情完成签到,获得积分10
22秒前
MutantKitten发布了新的文献求助10
22秒前
彭于晏应助羽宇采纳,获得10
23秒前
彭于晏应助豆豆采纳,获得10
24秒前
大小姐发布了新的文献求助10
25秒前
明理宛秋完成签到 ,获得积分10
26秒前
动听怀莲发布了新的文献求助10
26秒前
张鱼丸子发布了新的文献求助10
26秒前
一个发布了新的文献求助10
26秒前
28秒前
汉堡包应助林懋采纳,获得10
28秒前
orixero应助研友_Z7Xdl8采纳,获得10
29秒前
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673993
求助须知:如何正确求助?哪些是违规求助? 3229404
关于积分的说明 9785706
捐赠科研通 2939973
什么是DOI,文献DOI怎么找? 1611552
邀请新用户注册赠送积分活动 760987
科研通“疑难数据库(出版商)”最低求助积分说明 736344