Defect identification for oil and gas pipeline safety based on autonomous deep learning network

计算机科学 管道(软件) 鉴定(生物学) 安全监测 人工智能 联营 管道运输 传感器融合 实时计算 数据挖掘 环境科学 程序设计语言 植物 生物 环境工程 生物技术
作者
Min Zhang,Yanbao Guo,Qiuju Xie,Yuansheng Zhang,Deguo Wang,Jinzhong Chen
出处
期刊:Computer Communications [Elsevier]
卷期号:195: 14-26 被引量:16
标识
DOI:10.1016/j.comcom.2022.08.001
摘要

The safety detection for oil and gas pipelines is more and more worthy of attention. It not only promotes the development of pipeline safety work, but also provides a guarantee for pipeline safety decision management. However, there are more and more safety problems in pipeline operation, causing immeasurable consequences. Therefore, the pipeline safety detection technology needs to be further improved. In this paper, a two-axis magnetic flux leakage detection device is used for safety detection of an oil and gas pipeline, and the detection results are analyzed and studied. 77 sets of detection data are collected through the detection device. Due to the harsh environment of the oil and gas station, the data is severely disturbed, so the data is filtered firstly. The filtered data can better reflect the safety status information of the pipeline. Secondly, In order to avoid the random error of single-axis data, a two-dimensional data fusion method is proposed. The fusion data improves the accuracy of recognition of pipeline failure features. Thirdly, autonomous deep learning recognition algorithm is used to classify and recognize pipeline failure features. The network in this algorithm includes convolutional layers, pooling layers and fully connected layers. Through multiple simulation calculations, the number of network layers has been optimized. Finally, experiments are carried out based on the data collected on-site. The experiment results show that the training accuracy is 99.19%, and the testing accuracy is 97.38%. In short, the entire pipeline safety inspection data processing algorithm reliably identifies the types of pipeline failure defects. And it will provide a basis for the safe construction of pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taodage发布了新的文献求助10
刚刚
科研通AI2S应助研友_Lmbz1n采纳,获得10
1秒前
开朗世立发布了新的文献求助10
1秒前
1秒前
1秒前
nipanpan发布了新的文献求助10
1秒前
温暖冬日发布了新的文献求助30
2秒前
天天快乐应助zyz采纳,获得10
2秒前
2秒前
楚天正阔发布了新的文献求助10
3秒前
李爱国应助momo采纳,获得10
3秒前
西西发布了新的文献求助10
3秒前
4秒前
4秒前
6秒前
nkcyn完成签到 ,获得积分10
6秒前
正直听枫完成签到,获得积分10
7秒前
7秒前
七月玖发布了新的文献求助10
8秒前
8秒前
谦让的凝阳完成签到,获得积分20
9秒前
9秒前
重要笑南发布了新的文献求助10
9秒前
小纯洁发布了新的文献求助10
10秒前
屎上雕花关注了科研通微信公众号
12秒前
荔枝麻花完成签到,获得积分10
12秒前
卫三发布了新的文献求助10
12秒前
似锦繁花发布了新的文献求助10
13秒前
14秒前
16秒前
Bonnienuit发布了新的文献求助30
16秒前
Noel应助重要笑南采纳,获得10
16秒前
16秒前
16秒前
深情安青应助读研好难采纳,获得10
17秒前
饱满一手完成签到 ,获得积分10
20秒前
多喝水应助满意的夜柳采纳,获得10
20秒前
所所应助小纯洁采纳,获得30
22秒前
所所应助小纯洁采纳,获得10
22秒前
共享精神应助小纯洁采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195