Defect identification for oil and gas pipeline safety based on autonomous deep learning network

计算机科学 管道(软件) 鉴定(生物学) 安全监测 人工智能 联营 管道运输 传感器融合 实时计算 数据挖掘 环境科学 程序设计语言 植物 生物 环境工程 生物技术
作者
Min Zhang,Yanbao Guo,Qiuju Xie,Yuansheng Zhang,Deguo Wang,Jinzhong Chen
出处
期刊:Computer Communications [Elsevier]
卷期号:195: 14-26 被引量:29
标识
DOI:10.1016/j.comcom.2022.08.001
摘要

The safety detection for oil and gas pipelines is more and more worthy of attention. It not only promotes the development of pipeline safety work, but also provides a guarantee for pipeline safety decision management. However, there are more and more safety problems in pipeline operation, causing immeasurable consequences. Therefore, the pipeline safety detection technology needs to be further improved. In this paper, a two-axis magnetic flux leakage detection device is used for safety detection of an oil and gas pipeline, and the detection results are analyzed and studied. 77 sets of detection data are collected through the detection device. Due to the harsh environment of the oil and gas station, the data is severely disturbed, so the data is filtered firstly. The filtered data can better reflect the safety status information of the pipeline. Secondly, In order to avoid the random error of single-axis data, a two-dimensional data fusion method is proposed. The fusion data improves the accuracy of recognition of pipeline failure features. Thirdly, autonomous deep learning recognition algorithm is used to classify and recognize pipeline failure features. The network in this algorithm includes convolutional layers, pooling layers and fully connected layers. Through multiple simulation calculations, the number of network layers has been optimized. Finally, experiments are carried out based on the data collected on-site. The experiment results show that the training accuracy is 99.19%, and the testing accuracy is 97.38%. In short, the entire pipeline safety inspection data processing algorithm reliably identifies the types of pipeline failure defects. And it will provide a basis for the safe construction of pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Seven发布了新的文献求助10
刚刚
孤独梦安完成签到,获得积分10
刚刚
陆lulu完成签到,获得积分10
刚刚
1秒前
1秒前
ttt发布了新的文献求助10
3秒前
Siri完成签到,获得积分10
3秒前
雍雍完成签到 ,获得积分10
3秒前
姜夔发布了新的文献求助10
4秒前
4秒前
4秒前
单纯面包完成签到,获得积分10
4秒前
4秒前
111aa发布了新的文献求助10
4秒前
tan完成签到,获得积分10
5秒前
5秒前
徐伟大完成签到 ,获得积分10
5秒前
Six_seven发布了新的文献求助10
5秒前
乐意发布了新的文献求助10
6秒前
科研通AI6应助11111采纳,获得10
7秒前
沙漠水发布了新的文献求助10
7秒前
cancan发布了新的文献求助10
7秒前
HU发布了新的文献求助10
8秒前
ll完成签到,获得积分10
8秒前
8秒前
俊逸尔云发布了新的文献求助10
9秒前
LH完成签到,获得积分10
9秒前
玛卡巴卡完成签到,获得积分10
9秒前
10秒前
左丘世立完成签到,获得积分10
10秒前
xkcat完成签到,获得积分20
10秒前
lanjq兰坚强完成签到,获得积分10
10秒前
ding应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
叶崽完成签到 ,获得积分10
11秒前
wld_gs完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172