亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect identification for oil and gas pipeline safety based on autonomous deep learning network

计算机科学 管道(软件) 鉴定(生物学) 安全监测 人工智能 联营 管道运输 传感器融合 实时计算 数据挖掘 环境科学 程序设计语言 植物 生物 环境工程 生物技术
作者
Min Zhang,Yanbao Guo,Qiuju Xie,Yuansheng Zhang,Deguo Wang,Jinzhong Chen
出处
期刊:Computer Communications [Elsevier]
卷期号:195: 14-26 被引量:29
标识
DOI:10.1016/j.comcom.2022.08.001
摘要

The safety detection for oil and gas pipelines is more and more worthy of attention. It not only promotes the development of pipeline safety work, but also provides a guarantee for pipeline safety decision management. However, there are more and more safety problems in pipeline operation, causing immeasurable consequences. Therefore, the pipeline safety detection technology needs to be further improved. In this paper, a two-axis magnetic flux leakage detection device is used for safety detection of an oil and gas pipeline, and the detection results are analyzed and studied. 77 sets of detection data are collected through the detection device. Due to the harsh environment of the oil and gas station, the data is severely disturbed, so the data is filtered firstly. The filtered data can better reflect the safety status information of the pipeline. Secondly, In order to avoid the random error of single-axis data, a two-dimensional data fusion method is proposed. The fusion data improves the accuracy of recognition of pipeline failure features. Thirdly, autonomous deep learning recognition algorithm is used to classify and recognize pipeline failure features. The network in this algorithm includes convolutional layers, pooling layers and fully connected layers. Through multiple simulation calculations, the number of network layers has been optimized. Finally, experiments are carried out based on the data collected on-site. The experiment results show that the training accuracy is 99.19%, and the testing accuracy is 97.38%. In short, the entire pipeline safety inspection data processing algorithm reliably identifies the types of pipeline failure defects. And it will provide a basis for the safe construction of pipelines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助纳米大亨采纳,获得10
刚刚
2秒前
13秒前
量子星尘发布了新的文献求助10
19秒前
CHAUSU完成签到,获得积分10
29秒前
旧月完成签到 ,获得积分10
38秒前
旧月关注了科研通微信公众号
44秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
LIJinlin完成签到,获得积分10
1分钟前
雪白傲薇完成签到 ,获得积分10
1分钟前
LIJinlin发布了新的文献求助10
1分钟前
扯扯完成签到,获得积分20
1分钟前
1分钟前
讨厌水煮蛋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
2分钟前
讨厌水煮蛋发布了新的文献求助100
2分钟前
555完成签到,获得积分10
2分钟前
2分钟前
sera发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
老不靠谱发布了新的文献求助10
2分钟前
刘大宝发布了新的文献求助10
2分钟前
缪忆寒完成签到,获得积分10
2分钟前
充电宝应助刘大宝采纳,获得10
2分钟前
lovelife完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432