蛋白酶体
自噬
蛋白质降解
硼替佐米
生物
癌症研究
泛素连接酶
泛素
细胞生物学
多发性骨髓瘤
细胞凋亡
免疫学
生物化学
基因
作者
Anna Wolska,Piotr Smolewski
出处
期刊:Cancers
[Multidisciplinary Digital Publishing Institute]
日期:2022-08-03
卷期号:14 (15): 3778-3778
被引量:15
标识
DOI:10.3390/cancers14153778
摘要
Cells must maintain their proteome homeostasis by balancing protein synthesis and degradation. This is facilitated by evolutionarily-conserved processes, including the unfolded protein response and the proteasome-based system of protein clearance, autophagy, and chaperone-mediated autophagy. In some hematological malignancies, including acute myeloid leukemia, misfolding or aggregation of the wild-type p53 tumor-suppressor renders cells unable to undergo apoptosis, even with an intact p53 DNA sequence. Moreover, blocking the proteasome pathway triggers lymphoma cell apoptosis. Extensive studies have led to the development of proteasome inhibitors, which have advanced into drugs (such as bortezomib) used in the treatment of certain hematological tumors, including multiple myeloma. New therapeutic options have been studied making use of the so-called proteolysis-targeting chimeras (PROTACs), that bind desired proteins with a linker that connects them to an E3 ubiquitin ligase, resulting in proteasomal-targeted degradation. This review examines the mechanisms of protein degradation in the cells of the hematopoietic system, explains the role of dysfunctional protein degradation in the pathogenesis of hematological malignancies, and discusses the current and future advances of therapies targeting these pathways, based on an extensive search of the articles and conference proceedings from 2005 to April 2022.
科研通智能强力驱动
Strongly Powered by AbleSci AI