Efficient removal of levofloxacin by iron (II) phthalocyanine/g-C3N4 activated peroxymonosulfate under high salinity conditions: Role of high-valent iron-oxo species

化学 降级(电信) 激进的 催化作用 哌嗪 酞菁 矿化(土壤科学) 光催化 环境化学 无机化学 光化学 有机化学 氮气 计算机科学 电信
作者
Yanbin Wang,Zezhou Shi,Shen Hai-bo,Qiushuang Xing,Yunqing Pi
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:470: 144038-144038 被引量:21
标识
DOI:10.1016/j.cej.2023.144038
摘要

Efficient and selective removal of organic contaminants using traditional radical-dominated Advanced Oxidation Processes (AOPs) in complex environmental matrices is challenging, especially under high salinity conditions. This study proposes an alternative approach using an iron phthalocyanine-supported g-C3N4 composite (FePc/CN) as a peroxymonosulfate (PMS) activator for the efficient removal of organic contaminants. The FePc/CN-PMS process was selective towards the elimination of various organic contaminants, and those compounds with lower ionization potential value can be effectively degraded after reaction for 10 min. Results from radical quenching experiments, electron spin resonance (ESR), and PMSO chemical probe indicated that the dominant active species in the FePc/CN-PMS process are high-valent iron-oxo species (FeIVO2+), rather than the long-recognized SO4•− and •OH radical. A total of 22 intermediate products resulting from the degradation of LVF were identified by LC-MS. Additionally, two degradation pathways of LVF were proposed, with the piperazine ring of LVF being the primary site of degradation. The 5 %FePc/CN-PMS system demonstrates resistance to ubiquitous inorganic anions and dissolved organic matter (DOM) in an aquatic environment, enabling efficient levofloxacin (LVF) removal even under high salinity conditions. Furthermore, the 5 %FePc/CN catalyst exhibits good chemical stability and reusability, making it a viable option for practical water remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherry完成签到 ,获得积分10
刚刚
2秒前
量子星尘发布了新的文献求助10
2秒前
5秒前
知行者发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
zgaolei发布了新的文献求助10
9秒前
10秒前
11秒前
Damon完成签到,获得积分10
11秒前
郭浩峰发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
xxm发布了新的文献求助10
14秒前
lammpsxuedehao完成签到,获得积分10
14秒前
16秒前
脑洞疼应助kk采纳,获得10
18秒前
斧王发布了新的文献求助10
21秒前
困鼠了发布了新的文献求助10
23秒前
24秒前
WMR关闭了WMR文献求助
25秒前
OU发布了新的文献求助10
25秒前
26秒前
画家经纪人完成签到 ,获得积分10
27秒前
顾矜应助一颗蘑古力采纳,获得10
28秒前
28秒前
巫马沛春完成签到,获得积分10
29秒前
雨柏完成签到 ,获得积分10
29秒前
慕青应助key采纳,获得30
30秒前
cheese发布了新的文献求助10
30秒前
31秒前
Ming完成签到,获得积分10
33秒前
彭于晏应助甜甜如之采纳,获得10
34秒前
量子星尘发布了新的文献求助10
35秒前
陈末应助困鼠了采纳,获得10
37秒前
cc发布了新的文献求助10
40秒前
41秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637