A Novel Multi-label Human Protein Subcellular Localization Model Based on Gene Ontology and Functional Domain

基因本体论 计算机科学 注释 判别式 亚细胞定位 人工智能 相互信息 本体论 特征(语言学) 模式识别(心理学) 领域(数学分析) 领域(数学) 机器学习 数据挖掘 基因 数学 生物 数学分析 生物化学 基因表达 哲学 语言学 认识论 纯数学
作者
Simeng Wang,Kai Zou,Z. Wang,Shenghuo Zhu,Fan Yang
标识
DOI:10.1145/3592686.3592754
摘要

Subcellular localization of proteins plays an important role in determining protein function, revealing molecular interaction mechanisms, understanding complex physiological processes, and developing drug targets. In the traditional research field of protein subcellular localization prediction, many studies have been proved that the comprehensive performance of prediction model can be significantly improved based on the quantification of biological domains, such as nearest neighbor (NN) applied on gene ontology and conservative functional domains. However, with the increase of the understanding of annotation information, researchers have found that a few annotations of gene ontology and conservative functional domains was incorrect, which would lead to significant deviations in the prediction model based on NN. In order to solve this problem, a novel multi-label human protein subcellular localization prediction model for gene ontology (GO) terms and conserved functional domain (CDD) was proposed in this paper. The key points can be summarized as follows: firstly, the proposed model can extract more compact and discriminative feature by mining the hidden correlations between annotation terms; for example, capture the biological characteristics of protein sequences and annotate the hidden correlation between information terms to reduce the deviation of protein subcellular prediction results due to incorrect annotation information; secondly, PseAAC and PSSM have been employed as auxiliary feature to solve the prediction bias caused by incomplete or sparse GO annotations, which facilitates the re-annotation of protein subcellular location information. The experimental results demonstrated that the accuracy and F1 score of the model proposed in this paper can reach 84% and 76%, respectively, which outperform other traditional GO-based and NN-based approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助lixinlong采纳,获得10
刚刚
999完成签到,获得积分10
1秒前
Gorone发布了新的文献求助10
1秒前
马霄鑫发布了新的文献求助10
2秒前
4秒前
4秒前
今天进步了吗完成签到,获得积分10
5秒前
mylaodao完成签到,获得积分0
8秒前
8秒前
彭于晏应助马霄鑫采纳,获得10
8秒前
嗯哼完成签到 ,获得积分10
9秒前
9秒前
Starry完成签到 ,获得积分10
10秒前
林先生完成签到,获得积分10
10秒前
缓慢的可乐完成签到 ,获得积分10
11秒前
皮皮完成签到,获得积分10
13秒前
wuxunxun2015完成签到,获得积分10
13秒前
13秒前
lixinlong发布了新的文献求助10
15秒前
FF完成签到,获得积分10
15秒前
风评完成签到,获得积分10
15秒前
17秒前
搜集达人应助yyh12138采纳,获得10
17秒前
17秒前
WQY完成签到,获得积分10
18秒前
CC发布了新的文献求助10
19秒前
ggbond发布了新的文献求助10
20秒前
ZHH发布了新的文献求助10
21秒前
我是老大应助听毛细胞Hey采纳,获得10
21秒前
顺心夏青发布了新的文献求助30
22秒前
23秒前
24秒前
比比one发布了新的文献求助30
24秒前
25秒前
26秒前
26秒前
lele发布了新的文献求助10
28秒前
28秒前
共享精神应助勤奋雨采纳,获得10
28秒前
Markming完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461234
求助须知:如何正确求助?哪些是违规求助? 3054927
关于积分的说明 9045666
捐赠科研通 2744832
什么是DOI,文献DOI怎么找? 1505707
科研通“疑难数据库(出版商)”最低求助积分说明 695794
邀请新用户注册赠送积分活动 695233