Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition

脑电图 计算机科学 脑-机接口 模式识别(心理学) 语音识别 人工智能 域适应 情绪识别 领域(数学分析) 不变(物理) 情绪分类 交叉验证 适应(眼睛) 频域 数学 分类器(UML) 心理学 数学分析 神经科学 精神科 数学物理 计算机视觉
作者
Qingshan She,Chenqi Zhang,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:28
标识
DOI:10.1109/tim.2023.3277985
摘要

Emotion recognition is important in the application of brain-computer interface (BCI). Building a robust emotion recognition model across subjects and sessions is critical in emotion based BCI systems. Electroencephalogram (EEG) is a widely used tool to recognize different emotion states. However, EEG has disadvantages such as small amplitude, low signal-to-noise ratio, and non-stationary properties, resulting in large differences across subjects. To solve these problems, this paper proposes a new emotion recognition method based on a multi-source associate domain adaptation network, considering both domain invariant and domain-specific features. First, separate branches were constructed for multiple source domains, assuming that different EEG data shared the same low-level features. Secondly, the domain specific features were extracted by using the one-to-one associate domain adaptation. Then, the weighted scores of specific sources were obtained according to the distribution distance, and multiple source classifiers were deduced with the corresponding weighted scores. Finally, EEG emotion recognition experiments were conducted on different datasets, including SEED, DEAP, and SEED-IV dataset. Results indicated that, in the cross-subject experiment, the average accuracy in SEED dataset was 86.16%, DEAP dataset was 65.59%, and SEED-IV was 59.29%. In the cross-session experiment, the accuracies of SEED and SEED-IV datasets were 91.10% and 66.68%, respectively. Our proposed method has achieved better classification results compared to state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
云云完成签到,获得积分10
1秒前
bluse033完成签到,获得积分10
1秒前
852应助新新宝采纳,获得10
3秒前
iNk应助缥缈的幻雪采纳,获得20
6秒前
开心的问儿完成签到 ,获得积分10
8秒前
是木易呀应助狗剩采纳,获得10
10秒前
yiyayiya发布了新的文献求助10
10秒前
13秒前
xiaohong完成签到,获得积分10
13秒前
丘比特应助高高采纳,获得10
13秒前
雅居发布了新的文献求助10
13秒前
liam完成签到,获得积分10
14秒前
15秒前
兴奋蓝血发布了新的文献求助10
17秒前
18秒前
joyce930728完成签到,获得积分10
19秒前
今后应助俭朴千万采纳,获得10
20秒前
fz发布了新的文献求助10
21秒前
21秒前
hugh发布了新的文献求助10
23秒前
赫灵竹完成签到,获得积分10
23秒前
小秃兄完成签到,获得积分10
24秒前
24秒前
我要查文献完成签到,获得积分10
24秒前
xxiaobai发布了新的文献求助10
25秒前
25秒前
25秒前
柔弱小懒虫完成签到 ,获得积分10
26秒前
26秒前
26秒前
云云发布了新的文献求助10
26秒前
高高发布了新的文献求助10
26秒前
27秒前
Ava应助fz采纳,获得10
27秒前
黎书禾发布了新的文献求助10
28秒前
乐观的星月完成签到 ,获得积分10
29秒前
哈哈发布了新的文献求助10
29秒前
30秒前
英姑应助陈小白采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292561
求助须知:如何正确求助?哪些是违规求助? 2928864
关于积分的说明 8438726
捐赠科研通 2600953
什么是DOI,文献DOI怎么找? 1419337
科研通“疑难数据库(出版商)”最低求助积分说明 660282
邀请新用户注册赠送积分活动 642924