Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition

脑电图 计算机科学 脑-机接口 模式识别(心理学) 语音识别 人工智能 域适应 情绪识别 领域(数学分析) 不变(物理) 情绪分类 交叉验证 适应(眼睛) 频域 数学 分类器(UML) 心理学 数学分析 神经科学 精神科 数学物理 计算机视觉
作者
Qingshan She,Chenqi Zhang,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:39
标识
DOI:10.1109/tim.2023.3277985
摘要

Emotion recognition is important in the application of brain-computer interface (BCI). Building a robust emotion recognition model across subjects and sessions is critical in emotion based BCI systems. Electroencephalogram (EEG) is a widely used tool to recognize different emotion states. However, EEG has disadvantages such as small amplitude, low signal-to-noise ratio, and non-stationary properties, resulting in large differences across subjects. To solve these problems, this paper proposes a new emotion recognition method based on a multi-source associate domain adaptation network, considering both domain invariant and domain-specific features. First, separate branches were constructed for multiple source domains, assuming that different EEG data shared the same low-level features. Secondly, the domain specific features were extracted by using the one-to-one associate domain adaptation. Then, the weighted scores of specific sources were obtained according to the distribution distance, and multiple source classifiers were deduced with the corresponding weighted scores. Finally, EEG emotion recognition experiments were conducted on different datasets, including SEED, DEAP, and SEED-IV dataset. Results indicated that, in the cross-subject experiment, the average accuracy in SEED dataset was 86.16%, DEAP dataset was 65.59%, and SEED-IV was 59.29%. In the cross-session experiment, the accuracies of SEED and SEED-IV datasets were 91.10% and 66.68%, respectively. Our proposed method has achieved better classification results compared to state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdpb完成签到,获得积分10
1秒前
aaa福发布了新的文献求助30
2秒前
2秒前
3秒前
微微发布了新的文献求助10
3秒前
4秒前
Lin完成签到,获得积分10
4秒前
孜孜不倦完成签到,获得积分10
4秒前
elidan完成签到,获得积分10
4秒前
虚幻慕灵发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ding应助xu采纳,获得10
6秒前
6秒前
taozi完成签到,获得积分0
7秒前
苧晰发布了新的文献求助10
7秒前
天天快乐应助可研采纳,获得10
8秒前
gramatik完成签到,获得积分10
8秒前
所所应助柯沸采纳,获得10
8秒前
dqhahaha完成签到,获得积分10
8秒前
8秒前
song发布了新的文献求助10
9秒前
LXYzzm完成签到,获得积分10
9秒前
10秒前
y741应助害羞向日葵采纳,获得10
11秒前
11秒前
11秒前
11秒前
記yian发布了新的文献求助10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
项之桃完成签到,获得积分10
12秒前
火星上誉发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110