Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics

医学 无线电技术 放射科 接收机工作特性 核医学 压缩(物理) 曲线下面积 临床实习 曲线下面积 人工智能 内科学 家庭医学 计算机科学 药代动力学 复合材料 材料科学
作者
Shuo Duan,Yichun Hua,Guanmei Cao,Jun‐nan Hu,Wei Cui,Duo Zhang,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:165: 110899-110899 被引量:10
标识
DOI:10.1016/j.ejrad.2023.110899
摘要

Differentiating benign from malignant vertebral compression fractures (VCFs) is a diagnostic dilemma in clinical practice. To improve the accuracy and efficiency of diagnosis, we evaluated the performance of deep learning and radiomics methods based on computed tomography (CT) and clinical characteristics in differentiating between Osteoporosis VCFs (OVCFs) and malignant VCFs (MVCFs).We enrolled a total of 280 patients (155 with OVCFs and 125 with MVCFs) and randomly divided them into a training set (80%, n = 224) and a validation set (20%, n = 56). We developed three predictive models: a deep learning (DL) model, a radiomics (Rad) model, and a combined DL_Rad model, using CT and clinical characteristics data. The Inception_V3 served as the backbone of the DL model. The input data for the DL_Rad model consisted of the combined features of Rad and DCNN features. We calculated the receiver operating characteristic curve, area under the curve (AUC), and accuracy (ACC) to assess the performance of the models. Additionally, we calculated the correlation between Rad features and DCNN features.For the training set, the DL_Rad model achieved the best results, with an AUC of 0.99 and ACC of 0.99, followed by the Rad model (AUC: 0.99, ACC: 0.97) and DL model (AUC: 0.99, ACC: 0.94). For the validation set, the DL_Rad model (with an AUC of 0.97 and ACC of 0.93) outperformed the Rad model (with an AUC: 0.93 and ACC: 0.91) and the DL model (with an AUC: 0.89 and ACC: 0.88). Rad features achieved better classifier performance than the DCNN features, and their general correlations were weak.The Deep learnig model, Radiomics model, and Deep learning Radiomics model achieved promising results in discriminating MVCFs from OVCFs, and the DL_Rad model performed the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助yiling采纳,获得10
2秒前
狼洪明完成签到,获得积分10
2秒前
ivy完成签到 ,获得积分10
4秒前
ch3oh完成签到,获得积分10
6秒前
杨天天完成签到,获得积分10
6秒前
阿言完成签到 ,获得积分10
7秒前
8秒前
yu完成签到,获得积分10
8秒前
李爱国应助小木子采纳,获得10
11秒前
James发布了新的文献求助10
12秒前
现代的紫霜完成签到,获得积分10
12秒前
WTH完成签到,获得积分10
13秒前
yiling完成签到,获得积分10
13秒前
君克渡完成签到,获得积分10
16秒前
何筱江完成签到,获得积分10
17秒前
Brian完成签到,获得积分10
18秒前
Hina完成签到,获得积分10
18秒前
小鹿斑斑比完成签到,获得积分10
18秒前
若俗人完成签到,获得积分10
19秒前
五月完成签到 ,获得积分10
19秒前
wangke完成签到,获得积分10
20秒前
文献搬运工完成签到 ,获得积分10
20秒前
共享精神应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
22秒前
隐形白开水完成签到,获得积分10
22秒前
bobo完成签到,获得积分10
25秒前
pengyang完成签到 ,获得积分10
28秒前
Sean完成签到,获得积分10
28秒前
一瓶他克莫司完成签到 ,获得积分10
28秒前
coolkid完成签到 ,获得积分10
29秒前
29秒前
在水一方应助sherry采纳,获得10
31秒前
hakuna_matata完成签到 ,获得积分10
34秒前
Lynn发布了新的文献求助10
35秒前
山乞凡完成签到 ,获得积分10
36秒前
36秒前
42秒前
lingod完成签到,获得积分10
42秒前
哔哩哔哩往上爬完成签到 ,获得积分10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010