Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics

医学 无线电技术 放射科 接收机工作特性 核医学 压缩(物理) 曲线下面积 临床实习 曲线下面积 人工智能 内科学 家庭医学 计算机科学 药代动力学 复合材料 材料科学
作者
Shuo Duan,Yichun Hua,Guanmei Cao,Jun‐nan Hu,Wei Cui,Duo Zhang,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:165: 110899-110899 被引量:10
标识
DOI:10.1016/j.ejrad.2023.110899
摘要

Differentiating benign from malignant vertebral compression fractures (VCFs) is a diagnostic dilemma in clinical practice. To improve the accuracy and efficiency of diagnosis, we evaluated the performance of deep learning and radiomics methods based on computed tomography (CT) and clinical characteristics in differentiating between Osteoporosis VCFs (OVCFs) and malignant VCFs (MVCFs).We enrolled a total of 280 patients (155 with OVCFs and 125 with MVCFs) and randomly divided them into a training set (80%, n = 224) and a validation set (20%, n = 56). We developed three predictive models: a deep learning (DL) model, a radiomics (Rad) model, and a combined DL_Rad model, using CT and clinical characteristics data. The Inception_V3 served as the backbone of the DL model. The input data for the DL_Rad model consisted of the combined features of Rad and DCNN features. We calculated the receiver operating characteristic curve, area under the curve (AUC), and accuracy (ACC) to assess the performance of the models. Additionally, we calculated the correlation between Rad features and DCNN features.For the training set, the DL_Rad model achieved the best results, with an AUC of 0.99 and ACC of 0.99, followed by the Rad model (AUC: 0.99, ACC: 0.97) and DL model (AUC: 0.99, ACC: 0.94). For the validation set, the DL_Rad model (with an AUC of 0.97 and ACC of 0.93) outperformed the Rad model (with an AUC: 0.93 and ACC: 0.91) and the DL model (with an AUC: 0.89 and ACC: 0.88). Rad features achieved better classifier performance than the DCNN features, and their general correlations were weak.The Deep learnig model, Radiomics model, and Deep learning Radiomics model achieved promising results in discriminating MVCFs from OVCFs, and the DL_Rad model performed the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的颦发布了新的文献求助10
刚刚
GealAntS完成签到,获得积分0
刚刚
刚刚
刚刚
李健的小迷弟应助ddd采纳,获得10
1秒前
shiwt关注了科研通微信公众号
2秒前
Alger完成签到,获得积分10
6秒前
7秒前
8秒前
小镇的废物完成签到,获得积分10
8秒前
ZZ发布了新的文献求助30
8秒前
xhtt完成签到,获得积分10
11秒前
13秒前
16秒前
JJ完成签到,获得积分10
17秒前
Jasper应助ZZ采纳,获得10
20秒前
hwen1998完成签到 ,获得积分10
20秒前
20秒前
bb发布了新的文献求助10
21秒前
在路上完成签到 ,获得积分0
22秒前
星辰大海应助hyy采纳,获得10
22秒前
chenhui完成签到,获得积分10
23秒前
科研通AI2S应助bb采纳,获得10
26秒前
依居完成签到,获得积分10
26秒前
悦耳的绿旋完成签到,获得积分10
27秒前
Friday完成签到,获得积分10
28秒前
xiyin完成签到,获得积分10
29秒前
30秒前
梁三柏应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
梁三柏应助科研通管家采纳,获得10
30秒前
李健应助科研通管家采纳,获得10
30秒前
yufanhui应助科研通管家采纳,获得10
30秒前
梁三柏应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
嗯哼应助科研通管家采纳,获得10
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
yufanhui应助科研通管家采纳,获得10
30秒前
自信甜瓜应助科研通管家采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089165
求助须知:如何正确求助?哪些是违规求助? 2741290
关于积分的说明 7564290
捐赠科研通 2391558
什么是DOI,文献DOI怎么找? 1268291
科研通“疑难数据库(出版商)”最低求助积分说明 614044
版权声明 598684