已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics

医学 无线电技术 放射科 接收机工作特性 核医学 压缩(物理) 曲线下面积 临床实习 曲线下面积 人工智能 内科学 计算机科学 药代动力学 复合材料 材料科学 家庭医学
作者
Shuo Duan,Yichun Hua,Guanmei Cao,Jun‐nan Hu,Wei Cui,Duo Zhang,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110899-110899 被引量:20
标识
DOI:10.1016/j.ejrad.2023.110899
摘要

Differentiating benign from malignant vertebral compression fractures (VCFs) is a diagnostic dilemma in clinical practice. To improve the accuracy and efficiency of diagnosis, we evaluated the performance of deep learning and radiomics methods based on computed tomography (CT) and clinical characteristics in differentiating between Osteoporosis VCFs (OVCFs) and malignant VCFs (MVCFs).We enrolled a total of 280 patients (155 with OVCFs and 125 with MVCFs) and randomly divided them into a training set (80%, n = 224) and a validation set (20%, n = 56). We developed three predictive models: a deep learning (DL) model, a radiomics (Rad) model, and a combined DL_Rad model, using CT and clinical characteristics data. The Inception_V3 served as the backbone of the DL model. The input data for the DL_Rad model consisted of the combined features of Rad and DCNN features. We calculated the receiver operating characteristic curve, area under the curve (AUC), and accuracy (ACC) to assess the performance of the models. Additionally, we calculated the correlation between Rad features and DCNN features.For the training set, the DL_Rad model achieved the best results, with an AUC of 0.99 and ACC of 0.99, followed by the Rad model (AUC: 0.99, ACC: 0.97) and DL model (AUC: 0.99, ACC: 0.94). For the validation set, the DL_Rad model (with an AUC of 0.97 and ACC of 0.93) outperformed the Rad model (with an AUC: 0.93 and ACC: 0.91) and the DL model (with an AUC: 0.89 and ACC: 0.88). Rad features achieved better classifier performance than the DCNN features, and their general correlations were weak.The Deep learnig model, Radiomics model, and Deep learning Radiomics model achieved promising results in discriminating MVCFs from OVCFs, and the DL_Rad model performed the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ok完成签到,获得积分10
1秒前
MrTStar完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
cherrychou完成签到,获得积分10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮浮世世应助科研通管家采纳,获得30
5秒前
打打应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
浮浮世世应助科研通管家采纳,获得30
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
风中问晴发布了新的文献求助10
7秒前
迅速泽洋发布了新的文献求助10
7秒前
8秒前
CXS发布了新的文献求助10
8秒前
10秒前
秀丽的短靴完成签到,获得积分10
10秒前
所所应助吉良吉影采纳,获得10
12秒前
samantha817完成签到,获得积分10
12秒前
JamesPei应助长情火龙果采纳,获得10
13秒前
14秒前
15秒前
唠叨的无敌完成签到 ,获得积分20
15秒前
氢氧化钠Li完成签到,获得积分10
16秒前
朱庆柯发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422