Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics

医学 无线电技术 放射科 接收机工作特性 核医学 压缩(物理) 曲线下面积 临床实习 曲线下面积 人工智能 内科学 计算机科学 药代动力学 复合材料 材料科学 家庭医学
作者
Shuo Duan,Yichun Hua,Guanmei Cao,Jun‐nan Hu,Wei Cui,Duo Zhang,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:165: 110899-110899 被引量:20
标识
DOI:10.1016/j.ejrad.2023.110899
摘要

Differentiating benign from malignant vertebral compression fractures (VCFs) is a diagnostic dilemma in clinical practice. To improve the accuracy and efficiency of diagnosis, we evaluated the performance of deep learning and radiomics methods based on computed tomography (CT) and clinical characteristics in differentiating between Osteoporosis VCFs (OVCFs) and malignant VCFs (MVCFs).We enrolled a total of 280 patients (155 with OVCFs and 125 with MVCFs) and randomly divided them into a training set (80%, n = 224) and a validation set (20%, n = 56). We developed three predictive models: a deep learning (DL) model, a radiomics (Rad) model, and a combined DL_Rad model, using CT and clinical characteristics data. The Inception_V3 served as the backbone of the DL model. The input data for the DL_Rad model consisted of the combined features of Rad and DCNN features. We calculated the receiver operating characteristic curve, area under the curve (AUC), and accuracy (ACC) to assess the performance of the models. Additionally, we calculated the correlation between Rad features and DCNN features.For the training set, the DL_Rad model achieved the best results, with an AUC of 0.99 and ACC of 0.99, followed by the Rad model (AUC: 0.99, ACC: 0.97) and DL model (AUC: 0.99, ACC: 0.94). For the validation set, the DL_Rad model (with an AUC of 0.97 and ACC of 0.93) outperformed the Rad model (with an AUC: 0.93 and ACC: 0.91) and the DL model (with an AUC: 0.89 and ACC: 0.88). Rad features achieved better classifier performance than the DCNN features, and their general correlations were weak.The Deep learnig model, Radiomics model, and Deep learning Radiomics model achieved promising results in discriminating MVCFs from OVCFs, and the DL_Rad model performed the best.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
织诗成锦完成签到,获得积分10
刚刚
1秒前
开朗的翠霜完成签到,获得积分10
5秒前
Luna完成签到 ,获得积分10
6秒前
刘晓璐完成签到,获得积分10
6秒前
kvning完成签到,获得积分10
6秒前
段仁杰完成签到,获得积分10
7秒前
Anderson123完成签到,获得积分0
7秒前
ZHOUCHENG完成签到,获得积分0
8秒前
Anderson732完成签到,获得积分10
8秒前
9秒前
10秒前
火星上问柳完成签到,获得积分10
10秒前
10秒前
滕皓轩发布了新的文献求助30
10秒前
乐观的颦完成签到,获得积分10
11秒前
星辰大海应助11采纳,获得10
12秒前
yaomax完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
guozizi发布了新的文献求助30
14秒前
14秒前
zy发布了新的文献求助10
15秒前
陈嘟嘟发布了新的文献求助10
15秒前
kk完成签到 ,获得积分10
15秒前
llya完成签到,获得积分10
15秒前
15秒前
木悠完成签到,获得积分10
17秒前
轻松雨旋完成签到 ,获得积分10
17秒前
18秒前
上官若男应助yu采纳,获得10
20秒前
执着冬亦发布了新的文献求助10
21秒前
21秒前
zy关闭了zy文献求助
22秒前
24秒前
24秒前
kk完成签到 ,获得积分10
24秒前
lyp完成签到 ,获得积分10
25秒前
情怀应助辛勤的尔曼采纳,获得10
27秒前
像风一样自由完成签到,获得积分10
27秒前
爆米花应助gyj采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603755
求助须知:如何正确求助?哪些是违规求助? 4688731
关于积分的说明 14855695
捐赠科研通 4694961
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814