Differential diagnosis of benign and malignant vertebral compression fractures: Comparison and correlation of radiomics and deep learning frameworks based on spinal CT and clinical characteristics

医学 无线电技术 放射科 接收机工作特性 核医学 压缩(物理) 曲线下面积 临床实习 曲线下面积 人工智能 内科学 计算机科学 药代动力学 复合材料 材料科学 家庭医学
作者
Shuo Duan,Yichun Hua,Guanmei Cao,Jun‐nan Hu,Wei Cui,Duo Zhang,Shuai Xu,Tianhua Rong,Baoge Liu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:165: 110899-110899 被引量:20
标识
DOI:10.1016/j.ejrad.2023.110899
摘要

Differentiating benign from malignant vertebral compression fractures (VCFs) is a diagnostic dilemma in clinical practice. To improve the accuracy and efficiency of diagnosis, we evaluated the performance of deep learning and radiomics methods based on computed tomography (CT) and clinical characteristics in differentiating between Osteoporosis VCFs (OVCFs) and malignant VCFs (MVCFs).We enrolled a total of 280 patients (155 with OVCFs and 125 with MVCFs) and randomly divided them into a training set (80%, n = 224) and a validation set (20%, n = 56). We developed three predictive models: a deep learning (DL) model, a radiomics (Rad) model, and a combined DL_Rad model, using CT and clinical characteristics data. The Inception_V3 served as the backbone of the DL model. The input data for the DL_Rad model consisted of the combined features of Rad and DCNN features. We calculated the receiver operating characteristic curve, area under the curve (AUC), and accuracy (ACC) to assess the performance of the models. Additionally, we calculated the correlation between Rad features and DCNN features.For the training set, the DL_Rad model achieved the best results, with an AUC of 0.99 and ACC of 0.99, followed by the Rad model (AUC: 0.99, ACC: 0.97) and DL model (AUC: 0.99, ACC: 0.94). For the validation set, the DL_Rad model (with an AUC of 0.97 and ACC of 0.93) outperformed the Rad model (with an AUC: 0.93 and ACC: 0.91) and the DL model (with an AUC: 0.89 and ACC: 0.88). Rad features achieved better classifier performance than the DCNN features, and their general correlations were weak.The Deep learnig model, Radiomics model, and Deep learning Radiomics model achieved promising results in discriminating MVCFs from OVCFs, and the DL_Rad model performed the best.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助DYQin采纳,获得10
刚刚
刚刚
北有云烟完成签到 ,获得积分10
刚刚
丘比特应助文静采纳,获得10
1秒前
专注的问筠完成签到,获得积分10
2秒前
2秒前
orixero应助Zeus采纳,获得50
2秒前
111111111发布了新的文献求助10
2秒前
共享精神应助PengHu采纳,获得10
2秒前
哈牛发布了新的文献求助10
2秒前
river_121完成签到,获得积分10
3秒前
3秒前
徐大头发布了新的文献求助10
3秒前
代纤绮完成签到,获得积分10
3秒前
鲜艳的访风完成签到,获得积分10
3秒前
4秒前
4秒前
qianhua发布了新的文献求助10
5秒前
jichups完成签到,获得积分10
5秒前
小蘑菇应助jmy1995采纳,获得10
5秒前
刘欣完成签到,获得积分10
6秒前
zyx完成签到 ,获得积分10
6秒前
lyh发布了新的文献求助10
6秒前
不闻不问完成签到,获得积分10
8秒前
8秒前
Rando发布了新的文献求助10
8秒前
8秒前
8秒前
桃花落发布了新的文献求助10
8秒前
lr完成签到 ,获得积分10
8秒前
猴猴完成签到,获得积分10
9秒前
Archer完成签到,获得积分10
9秒前
爱吃粑粑发布了新的文献求助10
9秒前
LordRedScience完成签到,获得积分10
9秒前
10秒前
10秒前
李健的小迷弟应助科研白采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769