ARWGAN: Attention-Guided Robust Image Watermarking Model Based on GAN

数字水印 水印 稳健性(进化) 人工智能 鉴别器 计算机科学 计算机视觉 嵌入 图像(数学) 深度学习 失真(音乐) 模式识别(心理学) 探测器 基因 电信 生物化学 化学 放大器 计算机网络 带宽(计算)
作者
Jiangtao Huang,Ting Luo,Li Li,Gaobo Yang,Haiyong Xu,Chin‐Chen Chang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:14
标识
DOI:10.1109/tim.2023.3285981
摘要

In the existing deep learning based watermarking models, extracted image features for fusing with watermark are not abundant enough and more critically, essential features are not highlighted to be learned with the purpose of robust watermarking, both of which limit the watermarking performance. To solve those two drawbacks, this paper proposes an attention-guided robust image watermarking model based on generative adversarial network (ARWGAN). To acquire a great deal of representational image features, a feature fusion module (FFM) is devised to learn shallow and deep features effectively for multi-layer fusion with watermark, and meanwhile, reuse of those features by the dense connection enhances robustness. To alleviate image distortion caused by embedding watermark, an attention module (AM) is deployed to compute the attention mask by mining the global features of the original image. Specifically, with the guidance of the attention mask, image features representing inconspicuous regions and texture regions are enhanced for embedding the high strength of watermark, and simultaneously other features are suppressed to improve the watermarking performance. Furthermore, the noise sub-network is adopted for robustness enhancement by simulating various image attacks in iterative training. The discriminator is used to distinguish the encoded image from the original image for improving watermarking invisibility continuously. Experimental results demonstrate that ARWGAN is superior to the existing state-of-the-art watermarking models, and ablation experiments prove the effectiveness of the FFM and the AM. The code is avaliable in https://github.com/river-huang/ARWGAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助nnn采纳,获得10
刚刚
嘟嘟发布了新的文献求助10
刚刚
1秒前
1秒前
凌云完成签到,获得积分10
1秒前
物质尽头完成签到 ,获得积分10
1秒前
Jasper应助Meihi_Uesugi采纳,获得10
1秒前
2秒前
luuuuuu发布了新的文献求助10
2秒前
ll完成签到 ,获得积分10
2秒前
龙眼发布了新的文献求助10
3秒前
大个应助爱听歌土豆采纳,获得10
3秒前
3秒前
3秒前
追寻纲完成签到,获得积分10
3秒前
chenxi发布了新的文献求助10
4秒前
科研通AI5应助LL采纳,获得10
5秒前
傲娇的珊关注了科研通微信公众号
5秒前
小猪佩奇完成签到,获得积分10
6秒前
顾矜应助MengG采纳,获得10
6秒前
李健应助追寻的问玉采纳,获得10
6秒前
激流勇进wb完成签到 ,获得积分10
6秒前
6秒前
alice880124发布了新的文献求助10
6秒前
琳琳林发布了新的文献求助10
6秒前
DJ想吃饭了完成签到,获得积分20
6秒前
7秒前
小悦悦发布了新的文献求助10
7秒前
7秒前
共享精神应助齐平露采纳,获得10
7秒前
酷波er应助齐平露采纳,获得10
7秒前
无花果应助齐平露采纳,获得10
7秒前
今后应助齐平露采纳,获得10
7秒前
852应助齐平露采纳,获得10
7秒前
英姑应助齐平露采纳,获得10
7秒前
李健的小迷弟应助齐平露采纳,获得10
7秒前
搜集达人应助齐平露采纳,获得10
7秒前
科研通AI2S应助齐平露采纳,获得10
7秒前
传奇3应助齐平露采纳,获得10
7秒前
在水一方应助simon采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Barth, Derrida and the Language of Theology 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3591848
求助须知:如何正确求助?哪些是违规求助? 3160098
关于积分的说明 9528082
捐赠科研通 2863330
什么是DOI,文献DOI怎么找? 1573455
邀请新用户注册赠送积分活动 738690
科研通“疑难数据库(出版商)”最低求助积分说明 723047