Differentiable Integrated Motion Prediction and Planning With Learnable Cost Function for Autonomous Driving

可微函数 运动规划 计算机科学 稳健性(进化) 基线(sea) 弹道 规划师 功能(生物学) 场景测试 人工智能 控制理论(社会学) 机器学习 控制工程 控制(管理) 工程类 多样性(控制论) 机器人 数学 天文 生物化学 化学 数学分析 地质学 物理 海洋学 基因 生物 进化生物学
作者
Zhiyu Huang,Haochen Liu,Jingda Wu,Chen Lv
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (11): 15222-15236 被引量:39
标识
DOI:10.1109/tnnls.2023.3283542
摘要

Predicting the future states of surrounding traffic participants and planning a safe, smooth, and socially compliant trajectory accordingly are crucial for autonomous vehicles (AVs). There are two major issues with the current autonomous driving system: the prediction module is often separated from the planning module, and the cost function for planning is hard to specify and tune. To tackle these issues, we propose a differentiable integrated prediction and planning (DIPP) framework that can also learn the cost function from data. Specifically, our framework uses a differentiable nonlinear optimizer as the motion planner, which takes as input the predicted trajectories of surrounding agents given by the neural network and optimizes the trajectory for the AV, enabling all operations to be differentiable, including the cost function weights. The proposed framework is trained on a large-scale real-world driving dataset to imitate human driving trajectories in the entire driving scene and validated in both open-loop and closed-loop manners. The open-loop testing results reveal that the proposed method outperforms the baseline methods across a variety of metrics and delivers planning-centric prediction results, allowing the planning module to output trajectories close to those of human drivers. In closed-loop testing, the proposed method outperforms various baseline methods, showing the ability to handle complex urban driving scenarios and robustness against the distributional shift. Importantly, we find that joint training of planning and prediction modules achieves better performance than planning with a separate trained prediction module in both open-loop and closed-loop tests. Moreover, the ablation study indicates that the learnable components in the framework are essential to ensure planning stability and performance. Code and Supplementary Videos are available at https://mczhi.github.io/DIPP/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄黄应助yuan采纳,获得20
1秒前
搜集达人应助yuan采纳,获得10
1秒前
斯文败类应助yuan采纳,获得10
1秒前
2秒前
无辜紫菜发布了新的文献求助10
2秒前
3秒前
恐龙植树发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
好好好完成签到 ,获得积分20
11秒前
12秒前
12秒前
情怀应助开心人达采纳,获得10
12秒前
好好好关注了科研通微信公众号
14秒前
Liufgui应助yyl采纳,获得10
14秒前
宁忆完成签到 ,获得积分10
14秒前
白瑾完成签到 ,获得积分10
14秒前
15秒前
15秒前
向风完成签到,获得积分10
15秒前
15秒前
科目三应助上进采纳,获得10
16秒前
16秒前
菲晗子完成签到,获得积分10
17秒前
17秒前
着急的千山完成签到 ,获得积分10
18秒前
Shapee发布了新的文献求助50
19秒前
中海发布了新的文献求助10
20秒前
ee完成签到,获得积分10
20秒前
yananGee完成签到,获得积分10
21秒前
大模型应助美好的千愁采纳,获得10
21秒前
无私菲鹰发布了新的文献求助30
22秒前
安南完成签到 ,获得积分10
23秒前
张舒涵完成签到,获得积分10
23秒前
23秒前
cctv_x完成签到,获得积分10
24秒前
脑洞疼应助小老板采纳,获得10
24秒前
25秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070