Analysis of Emerging Variants of Turkey Reovirus using Machine Learning

计算机科学 人工智能 病毒学 计算生物学 生物
作者
Maryam KafiKang,Chamudi Abeysiriwardana,Vikash Singh,Chan Koh,Janet Prichard,Sunil K. Mor,Abdeltawab Hendawi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (3)
标识
DOI:10.1093/bib/bbae224
摘要

Abstract Avian reoviruses continue to cause disease in turkeys with varied pathogenicity and tissue tropism. Turkey enteric reovirus has been identified as a causative agent of enteritis or inapparent infections in turkeys. The new emerging variants of turkey reovirus, tentatively named turkey arthritis reovirus (TARV) and turkey hepatitis reovirus (THRV), are linked to tenosynovitis/arthritis and hepatitis, respectively. Turkey arthritis and hepatitis reoviruses are causing significant economic losses to the turkey industry. These infections can lead to poor weight gain, uneven growth, poor feed conversion, increased morbidity and mortality and reduced marketability of commercial turkeys. To combat these issues, detecting and classifying the types of reoviruses in turkey populations is essential. This research aims to employ clustering methods, specifically K-means and Hierarchical clustering, to differentiate three types of turkey reoviruses and identify novel emerging variants. Additionally, it focuses on classifying variants of turkey reoviruses by leveraging various machine learning algorithms such as Support Vector Machines, Naive Bayes, Random Forest, Decision Tree, and deep learning algorithms, including convolutional neural networks (CNNs). The experiments use real turkey reovirus sequence data, allowing for robust analysis and evaluation of the proposed methods. The results indicate that machine learning methods achieve an average accuracy of 92%, F1-Macro of 93% and F1-Weighted of 92% scores in classifying reovirus types. In contrast, the CNN model demonstrates an average accuracy of 85%, F1-Macro of 71% and F1-Weighted of 84% scores in the same classification task. The superior performance of the machine learning classifiers provides valuable insights into reovirus evolution and mutation, aiding in detecting emerging variants of pathogenic TARVs and THRVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助石烁采纳,获得10
1秒前
Cc发布了新的文献求助10
1秒前
走之完成签到,获得积分10
2秒前
小白发布了新的文献求助30
3秒前
嚭嚭完成签到,获得积分10
3秒前
独孤发布了新的文献求助20
3秒前
致行完成签到,获得积分10
8秒前
竹园完成签到,获得积分10
9秒前
李健应助高兴断秋采纳,获得10
9秒前
哇塞啊发布了新的文献求助10
10秒前
思维发布了新的文献求助10
13秒前
汉堡包应助竹园采纳,获得10
13秒前
彭于晏应助pwj采纳,获得10
13秒前
lx完成签到 ,获得积分10
14秒前
小蘑菇应助致行采纳,获得10
14秒前
15秒前
春锅锅完成签到,获得积分10
15秒前
16秒前
kittyLoYuer完成签到 ,获得积分10
17秒前
戴岱完成签到,获得积分10
17秒前
邓夏真完成签到,获得积分10
17秒前
18秒前
酶没美镁发布了新的文献求助10
18秒前
李天恩完成签到 ,获得积分10
18秒前
邱寒烟aa完成签到 ,获得积分0
18秒前
邓夏真发布了新的文献求助20
20秒前
toner发布了新的文献求助10
21秒前
苏卿应助科研通管家采纳,获得10
21秒前
苏卿应助科研通管家采纳,获得10
21秒前
苏卿应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
苏卿应助科研通管家采纳,获得10
22秒前
在水一方应助Una采纳,获得10
22秒前
Yziii应助科研通管家采纳,获得10
22秒前
聪慧雪糕发布了新的文献求助10
22秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388