MTCSNet: One-stage learning and two-point labeling are sufficient for cell segmentation

分割 人工智能 图像分割 点(几何) 计算机视觉 计算机科学 阶段(地层学) 模式识别(心理学) 数学 生物 几何学 古生物学
作者
Binyu Zhang,Meng Zhu,H. Li,Zhicheng Zhao,Fei Su
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3404428
摘要

Deep convolution neural networks have been widely used in medical image analysis, such as lesion identification in whole-slide images, cancer detection, and cell segmentation, etc. However, it is often inevitable that researchers try their best to refine annotations so as to enhance the model performance, especially for cell segmentation task. Weakly supervised learning can greatly reduce the workload of annotations, while there is still a huge performance gap between the weakly and fully supervised learning approaches. In this work, we propose a weakly-supervised cell segmentation method, namely Multi-Task Cell Segmentation Network (MTCSNet), for multi-modal medical images, including pathological, brightfield, fluorescent, phase-contrast and differential interference contrast images. MTCSNet is learnt in a single-stage training manner, where only two annotated points for each cell provide supervision information, and the first one is the centroid, the second one is its boundary. Additionally, five auxiliary tasks are elaborately designed to train the network, including two pixel-level classifications, a pixel-level regression, a local temperature scaling and an instance-level distance regression task, which is proposed to regress the distances between the cell centroid and its boundaries in eight orientations. The experimental results indicate that our method outperforms all state-of-the-art weakly-supervised cell segmentation approaches on public multi-modal medical image datasets. The promising performance also shows that a single-stage learning with two-point labeling approach are sufficient for cell segmentation, instead of fine contour delineation. The codes are available at: https://github.com/binging512/MTCSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星发布了新的文献求助10
1秒前
1秒前
yanhuazi发布了新的文献求助10
4秒前
脑洞疼应助有魅力魂幽采纳,获得10
4秒前
5秒前
6秒前
mocheer完成签到,获得积分10
7秒前
xiaoma发布了新的文献求助10
8秒前
ding应助努努酱采纳,获得10
9秒前
10秒前
苏书白应助校长兼体委采纳,获得10
11秒前
颜沛文发布了新的文献求助10
11秒前
11秒前
bubble完成签到 ,获得积分10
12秒前
彭于晏应助sun采纳,获得10
12秒前
fly the bike应助星星气球采纳,获得10
13秒前
13秒前
脑洞疼应助飓风卡塔琳娜采纳,获得10
13秒前
无花果应助xiaoma采纳,获得10
14秒前
你在说神马完成签到 ,获得积分10
15秒前
abc完成签到,获得积分20
16秒前
江峰发布了新的文献求助10
16秒前
萌萌哒完成签到,获得积分10
17秒前
天天快乐应助刘四毛采纳,获得10
17秒前
搜集达人应助认真的画板采纳,获得10
17秒前
michael_xu完成签到,获得积分10
18秒前
疯狂的易梦完成签到 ,获得积分10
18秒前
00发布了新的文献求助30
19秒前
李爱国应助伶俐送终采纳,获得10
19秒前
飓风卡塔琳娜完成签到,获得积分10
20秒前
所所应助自信晟睿采纳,获得10
20秒前
23秒前
24秒前
sun完成签到,获得积分20
25秒前
酷波er应助江峰采纳,获得10
25秒前
26秒前
27秒前
27秒前
sun发布了新的文献求助10
28秒前
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721