MTCSNet: One-stage learning and two-point labeling are sufficient for cell segmentation

分割 人工智能 图像分割 点(几何) 计算机视觉 计算机科学 阶段(地层学) 模式识别(心理学) 数学 生物 几何学 古生物学
作者
Binyu Zhang,Meng Zhu,Hongyuan Li,Zhicheng Zhao,Fei Su
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3404428
摘要

Deep convolution neural networks have been widely used in medical image analysis, such as lesion identification in whole-slide images, cancer detection, and cell segmentation, etc. However, it is often inevitable that researchers try their best to refine annotations so as to enhance the model performance, especially for cell segmentation task. Weakly supervised learning can greatly reduce the workload of annotations, while there is still a huge performance gap between the weakly and fully supervised learning approaches. In this work, we propose a weakly-supervised cell segmentation method, namely Multi-Task Cell Segmentation Network (MTCSNet), for multi-modal medical images, including pathological, brightfield, fluorescent, phase-contrast and differential interference contrast images. MTCSNet is learnt in a single-stage training manner, where only two annotated points for each cell provide supervision information, and the first one is the centroid, the second one is its boundary. Additionally, five auxiliary tasks are elaborately designed to train the network, including two pixel-level classifications, a pixel-level regression, a local temperature scaling and an instance-level distance regression task, which is proposed to regress the distances between the cell centroid and its boundaries in eight orientations. The experimental results indicate that our method outperforms all state-of-the-art weakly-supervised cell segmentation approaches on public multi-modal medical image datasets. The promising performance also shows that a single-stage learning with two-point labeling approach are sufficient for cell segmentation, instead of fine contour delineation. The codes are available at: https://github.com/binging512/MTCSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小芒果完成签到,获得积分0
刚刚
刚刚
刚刚
phl完成签到,获得积分10
刚刚
1秒前
搜集达人应助lsq采纳,获得10
1秒前
1秒前
1秒前
叶暖发布了新的文献求助10
1秒前
桐桐应助star采纳,获得10
2秒前
好好学习的小学生完成签到,获得积分10
2秒前
哈哈哈发布了新的文献求助10
3秒前
时言序发布了新的文献求助10
3秒前
852应助zhj采纳,获得10
4秒前
虚心的垣发布了新的文献求助30
4秒前
5秒前
思源应助雪雪儿采纳,获得10
5秒前
苏苏发布了新的文献求助10
6秒前
6秒前
6秒前
xixi发布了新的文献求助10
6秒前
英俊的铭应助fff采纳,获得10
6秒前
熊孩子完成签到,获得积分10
7秒前
青阳发布了新的文献求助10
7秒前
Singularity应助阔达的冷霜采纳,获得10
7秒前
7秒前
huahua完成签到 ,获得积分10
7秒前
zzzsh完成签到,获得积分10
8秒前
CR7应助12345678采纳,获得20
8秒前
cbf完成签到 ,获得积分10
9秒前
somin应助淡漠采纳,获得10
9秒前
啥时候能退休完成签到,获得积分10
10秒前
Hello应助叶暖采纳,获得10
10秒前
10秒前
苏苏完成签到,获得积分10
11秒前
完美世界应助在蒸的白面采纳,获得10
11秒前
ljh123456发布了新的文献求助10
12秒前
英俊的铭应助XXU采纳,获得10
15秒前
科研搬砖发布了新的文献求助30
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794