亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MTCSNet: One-stage learning and two-point labeling are sufficient for cell segmentation

分割 人工智能 图像分割 点(几何) 计算机视觉 计算机科学 阶段(地层学) 模式识别(心理学) 数学 生物 几何学 古生物学
作者
Binyu Zhang,Meng Zhu,Hongyuan Li,Zhicheng Zhao,Fei Su
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3404428
摘要

Deep convolution neural networks have been widely used in medical image analysis, such as lesion identification in whole-slide images, cancer detection, and cell segmentation, etc. However, it is often inevitable that researchers try their best to refine annotations so as to enhance the model performance, especially for cell segmentation task. Weakly supervised learning can greatly reduce the workload of annotations, while there is still a huge performance gap between the weakly and fully supervised learning approaches. In this work, we propose a weakly-supervised cell segmentation method, namely Multi-Task Cell Segmentation Network (MTCSNet), for multi-modal medical images, including pathological, brightfield, fluorescent, phase-contrast and differential interference contrast images. MTCSNet is learnt in a single-stage training manner, where only two annotated points for each cell provide supervision information, and the first one is the centroid, the second one is its boundary. Additionally, five auxiliary tasks are elaborately designed to train the network, including two pixel-level classifications, a pixel-level regression, a local temperature scaling and an instance-level distance regression task, which is proposed to regress the distances between the cell centroid and its boundaries in eight orientations. The experimental results indicate that our method outperforms all state-of-the-art weakly-supervised cell segmentation approaches on public multi-modal medical image datasets. The promising performance also shows that a single-stage learning with two-point labeling approach are sufficient for cell segmentation, instead of fine contour delineation. The codes are available at: https://github.com/binging512/MTCSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小丑鱼儿完成签到 ,获得积分10
7秒前
19秒前
科研通AI5应助Rururu采纳,获得10
37秒前
小红书求接接接接一篇完成签到,获得积分10
38秒前
热情的橙汁完成签到,获得积分10
1分钟前
1分钟前
Rururu发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
hy关注了科研通微信公众号
2分钟前
hy发布了新的文献求助30
2分钟前
wls完成签到 ,获得积分10
2分钟前
科研通AI2S应助无端采纳,获得10
2分钟前
ferry完成签到,获得积分10
3分钟前
3分钟前
3分钟前
sunhhhh完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助虚心的渊思采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
ding应助FFF采纳,获得30
4分钟前
怕黑的砖家完成签到 ,获得积分10
4分钟前
科研通AI5应助Rururu采纳,获得10
4分钟前
4分钟前
Rururu发布了新的文献求助10
4分钟前
Rururu完成签到,获得积分10
5分钟前
直率的笑翠完成签到 ,获得积分10
5分钟前
爱瑶瑶完成签到 ,获得积分10
5分钟前
快哒哒哒发布了新的文献求助20
5分钟前
科研通AI5应助nssm采纳,获得10
5分钟前
顾矜应助快哒哒哒采纳,获得10
5分钟前
快哒哒哒完成签到,获得积分10
5分钟前
5分钟前
快哒哒哒发布了新的文献求助10
5分钟前
5分钟前
ferry发布了新的文献求助10
6分钟前
幻听发布了新的文献求助10
6分钟前
Awais完成签到,获得积分10
6分钟前
6分钟前
nssm发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4918076
求助须知:如何正确求助?哪些是违规求助? 4190849
关于积分的说明 13015403
捐赠科研通 3960564
什么是DOI,文献DOI怎么找? 2171293
邀请新用户注册赠送积分活动 1189349
关于科研通互助平台的介绍 1097648