材料科学
成像体模
电磁线圈
磁铁
核医学
物理
医学
量子力学
作者
Yuri Iwamoto,Hiroaki Shimamoto,Doaa Felemban,Tomoyuki Terai,Sven Kreiborg,Sanjay M. Mallya,Fan Yang,Chihiro Tanikawa,Shumei Murakami
出处
期刊:Dentomaxillofacial Radiology
[British Institute of Radiology]
日期:2024-06-13
卷期号:53 (6): 396-406
摘要
Abstract Objectives To evaluate magnetic susceptibility artefacts produced by orthodontic wires on MRI and the influence of wire properties and MRI image sequences on the magnitude of the artefact. Methods Arch form orthodontic wires [four stainless steels (SS), one cobalt chromium (CC) alloy, 13 titanium (Ti) alloys] were embedded in a polyester phantom, and scanned using a 1.5-T superconducting magnet scanner with an eight-channel phased-array coil. All wires were scanned with T1-weighted spin echo (SE) and gradient echo (GRE) sequences according to the American Society for Testing and Materials (ASTM) F2119-07 standard. The phantom also scanned other eight sequences. Artefacts were measured using the ASTM F2119-07 definition and OsiriX software. Artefact volume was analysed according to metal composition, wire length, number of wires, wire thickness, and imaging sequence as factors. Results With SE/GRE, black/white artefacts volumes from all SS wires were significantly larger than those produced by CC and Ti wires (P < .01). With the GRE, the black artefacts volume was the highest with the SS wires. With the SE, the black artefacts volume was small, whereas white artefacts were noticeable. The cranio-caudal extent of the artefacts was significantly longer with SS wires (P < .01). Although a direct relationship of wire length, number of wires, and wire thickness with artefact volume was noted, these factors did not influence artefact extension in the cranio-caudal direction. Conclusions Ferromagnetic/paramagnetic orthodontic wires create artefacts due to local alteration of magnetic field homogeneity. The SS-type wires produced the largest artefacts followed by CC and Ti.
科研通智能强力驱动
Strongly Powered by AbleSci AI