浪费的
营养不良
医学
人体测量学
粪便
随机对照试验
内科学
营养补充
儿科
生理学
生物
古生物学
作者
Ishita Mostafa,Martin L. Hibberd,Steven J. Hartman,Md Hasan Hafizur Rahman,Mustafa Mahfuz,S. M. Tafsir Hasan,Per Ashorn,Michael J. Barratt,Tahmeed Ahmed,Jeffrey I. Gordon
出处
期刊:EBioMedicine
[Elsevier]
日期:2024-06-01
卷期号:104: 105166-105166
被引量:4
标识
DOI:10.1016/j.ebiom.2024.105166
摘要
BackgroundGlobally, stunting affects ∼150 million children under five, while wasting affects nearly 50 million. Current interventions have had limited effectiveness in ameliorating long-term sequelae of undernutrition including stunting, cognitive deficits and immune dysfunction. Disrupted development of the gut microbiota has been linked to the pathogenesis of undernutrition, providing potentially new treatment approaches.Methods124 Bangladeshi children with moderate acute malnutrition (MAM) enrolled (at 12–18 months) in a previously reported 3-month RCT of a microbiota-directed complementary food (MDCF-2) were followed for two years. Weight and length were monitored by anthropometry, the abundances of bacterial strains were assessed by quantifying metagenome-assembled genomes (MAGs) in serially collected fecal samples and levels of growth-associated proteins were measured in plasma.FindingsChildren who had received MDCF-2 were significantly less stunted during follow-up than those who received a standard ready-to-use supplementary food (RUSF) [linear mixed-effects model, βtreatment group x study week (95% CI) = 0.002 (0.001, 0.003); P = 0.004]. They also had elevated fecal abundances of Agathobacter faecis, Blautia massiliensis, Lachnospira and Dialister, plus increased levels of a group of 37 plasma proteins (linear model; FDR-adjusted P < 0.1), including IGF-1, neurotrophin receptor NTRK2 and multiple proteins linked to musculoskeletal and CNS development, that persisted for 6-months post-intervention.InterpretationMDCF-2 treatment of Bangladeshi children with MAM, which produced significant improvements in wasting during intervention, also reduced stunting during follow-up. These results suggest that the effectiveness of supplementary foods for undernutrition may be improved by including ingredients that sponsor healthy microbiota-host co-development.FundingThis work was supported by the BMGF (Grants OPP1134649/INV-000247).
科研通智能强力驱动
Strongly Powered by AbleSci AI