Unsupervised Bayesian Generation of Synthetic CT from CBCT Using Patient-Specific Score-Based Prior.

贝叶斯概率 人工智能 计算机科学 医学物理学 医学 核医学
作者
Junbo Peng,Yuan Gao,Chih‐Wei Chang,Richard L. J. Qiu,Tonghe Wang,Aparna H. Kesarwala,Kailin Yang,Jacob G. Scott,David S. Yu,Qian Zhang
出处
期刊:Cornell University - arXiv
标识
摘要

Background: Cone-beam computed tomography (CBCT) scans, performed fractionally (e.g., daily or weekly), are widely utilized for patient alignment in the image-guided radiotherapy (IGRT) process, thereby making it a potential imaging modality for the implementation of adaptive radiotherapy (ART) protocols. Nonetheless, significant artifacts and incorrect Hounsfield unit (HU) values hinder their application in quantitative tasks such as target and organ segmentations and dose calculation. Therefore, acquiring CT-quality images from the CBCT scans is essential to implement online ART in clinical settings. Purpose: This work aims to develop an unsupervised learning method using the patient-specific diffusion model for CBCT-based synthetic CT (sCT) generation to improve the image quality of CBCT. Methods: The proposed method is in an unsupervised framework that utilizes a patient-specific score-based model as the image prior alongside a customized total variation (TV) regularization to enforce coherence across different transverse slices. The score-based model is unconditionally trained using the same patient's planning CT (pCT) images to characterize the manifold of CT-quality images and capture the unique anatomical information of the specific patient. The efficacy of the proposed method was assessed on images from anatomical sites including head and neck (H&N) cancer, pancreatic cancer, and lung cancer. The performance of the proposed CBCT correction method was evaluated using quantitative metrics including mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). Additionally, the proposed algorithm was benchmarked against two other unsupervised diffusion model-based CBCT correction algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
Www发布了新的文献求助30
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
刚刚
zhengni发布了新的文献求助10
刚刚
DIY101发布了新的文献求助10
1秒前
LuckyJ_Jia应助陌路孤星采纳,获得10
1秒前
传奇3应助SAVP采纳,获得10
2秒前
2秒前
Rolo完成签到,获得积分10
4秒前
4秒前
小5完成签到,获得积分10
5秒前
jiang发布了新的文献求助10
6秒前
6秒前
聪聪完成签到,获得积分10
6秒前
6秒前
山月发布了新的文献求助10
7秒前
8秒前
苏幕完成签到,获得积分10
9秒前
10秒前
晶晶在努力完成签到 ,获得积分10
10秒前
周凡淇发布了新的文献求助10
10秒前
平常雪柳发布了新的文献求助10
11秒前
劳模发布了新的文献求助10
12秒前
端庄的访枫完成签到 ,获得积分10
14秒前
gongjianhu完成签到,获得积分10
14秒前
wanci应助jiang采纳,获得10
15秒前
dorr完成签到,获得积分20
15秒前
小张完成签到,获得积分10
16秒前
科研通AI2S应助甜蜜的代容采纳,获得10
17秒前
初始发布了新的文献求助10
18秒前
Owen应助陌路孤星采纳,获得10
19秒前
在水一方应助小可爱采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323