亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TF-TCN: A time-frequency combined gas concentration prediction model for E-nose data

电子鼻 计算机科学 环境科学 人工智能
作者
Xu Ma,Fan Wu,Yan Jia,Shukai Duan,Xiaoyan Peng
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:376: 115654-115654 被引量:3
标识
DOI:10.1016/j.sna.2024.115654
摘要

Gas concentration prediction is one of the main tasks in the field of electronic nose (E-nose). Currently, most of the models based on recurrent and convolutional architectures, such as long short-term memory (LSTM) and temporal convolutional network (TCN), focus only on the time domain (TD) information, which may lead to the difficulty in capturing the features and the omission of information extraction of long-term sequences in E-nose data. Therefore, a TCN model combining time-frequency (TF) enhanced network called TF-TCN is proposed in this work. Specifically, a frequency domain (FD) module, which transfers the TD information to the FD by the fast Fourier transform (FFT), is added into the traditional TCN to perform the feature extraction with the TCN basic blocks in multiple scales. Meanwhile, Gaussian error linear unit (GELU) replaces the rectified linear unit (RELU) to utilize the nonlinearity, which weights inputs by their values rather than gates inputs by their signs as in RELU. Based on two single gas dataset, sufficient experiments demonstrate the advantages of TF-TCN from different perspectives. Compared with the comparative models, TF-TCN reduces the root mean square error (RMSE) and the mean absolute error (MAE) on the two single gas datasets by at least 23.8% and 36.1% respectively. In addition, experiments based on a mixed gas dataset demonstrate the outstanding prediction abilities of TF-TCN even under disturbed conditions. As a result, our work may provide a novel way of thinking about the extraction of information from E-nose data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
wegsa发布了新的文献求助20
9秒前
meikoo发布了新的文献求助10
9秒前
张贵超发布了新的文献求助10
11秒前
nini完成签到 ,获得积分10
13秒前
13秒前
森森完成签到 ,获得积分10
16秒前
科研通AI5应助yyy采纳,获得10
17秒前
张贵超完成签到,获得积分20
17秒前
www发布了新的文献求助10
17秒前
复杂的花瓣关注了科研通微信公众号
20秒前
今后应助张贵超采纳,获得10
21秒前
23秒前
29秒前
33秒前
迷你的靖雁完成签到,获得积分10
35秒前
王老吉发布了新的文献求助10
35秒前
传奇3应助复杂的花瓣采纳,获得10
40秒前
www完成签到,获得积分10
40秒前
41秒前
小二郎应助hajy采纳,获得10
48秒前
51秒前
52秒前
55秒前
甜菜发布了新的文献求助10
59秒前
Splaink完成签到 ,获得积分10
1分钟前
学不完了完成签到 ,获得积分10
1分钟前
Jalynn2044完成签到 ,获得积分10
1分钟前
1分钟前
Billy应助科研通管家采纳,获得30
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
lhz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI5应助Luochenxi采纳,获得10
1分钟前
小刘鸭鸭发布了新的文献求助10
1分钟前
大碗完成签到 ,获得积分10
1分钟前
KDS发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555679
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390631
捐赠科研通 2831010
什么是DOI,文献DOI怎么找? 1556269
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803