Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods

城市热岛 强度(物理) 共同空间格局 环境科学 空格(标点符号) 空间生态学 城市绿地 自然地理学 计算机科学 地理 气象学 数学 统计 生态学 物理 操作系统 生物 量子力学
作者
Jinyao Lin,Suixuan Qiu,Xiujuan Tan,Yaye Zhuang
出处
期刊:Building and Environment [Elsevier]
卷期号:228: 109910-109910 被引量:123
标识
DOI:10.1016/j.buildenv.2022.109910
摘要

Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气千易发布了新的文献求助10
1秒前
1秒前
SciGPT应助CNS采纳,获得10
1秒前
1秒前
2秒前
科研通AI6应助追寻飞风采纳,获得10
2秒前
2秒前
2秒前
冰淇淋发布了新的文献求助10
2秒前
研友_Z6k5Q8发布了新的文献求助10
3秒前
孤独的素发布了新的文献求助10
3秒前
憨憨发布了新的文献求助10
3秒前
dujinjun完成签到,获得积分10
6秒前
菠萝吹雪发布了新的文献求助10
6秒前
7秒前
7秒前
CodeCraft应助四观人采纳,获得10
7秒前
JamesPei应助啦啦啦采纳,获得10
7秒前
王泽发布了新的文献求助10
7秒前
8秒前
文艺的听白完成签到 ,获得积分10
8秒前
缥缈的闭月完成签到,获得积分10
8秒前
科研通AI6应助桂桂采纳,获得10
8秒前
学术芽完成签到,获得积分10
9秒前
loulan完成签到,获得积分10
9秒前
YO发布了新的文献求助10
9秒前
毋意发布了新的文献求助10
9秒前
10秒前
10秒前
李爱国应助憨憨采纳,获得10
10秒前
XuanZhang发布了新的文献求助10
11秒前
梅梅超勇敢完成签到,获得积分10
11秒前
小m完成签到,获得积分10
11秒前
chenzheng完成签到 ,获得积分20
11秒前
刘岩发布了新的文献求助20
11秒前
zgnb发布了新的文献求助30
12秒前
林芊万应助神外彭于晏采纳,获得20
13秒前
菠萝吹雪完成签到,获得积分10
13秒前
饼干完成签到,获得积分10
13秒前
默默的彩虹完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428975
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181264
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436837
关于科研通互助平台的介绍 1414040