Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods

城市热岛 强度(物理) 共同空间格局 环境科学 空格(标点符号) 空间生态学 城市绿地 自然地理学 计算机科学 地理 气象学 数学 统计 生态学 物理 操作系统 生物 量子力学
作者
Jinyao Lin,Suixuan Qiu,Xiujuan Tan,Yaye Zhuang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:228: 109910-109910 被引量:123
标识
DOI:10.1016/j.buildenv.2022.109910
摘要

Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SpineLY发布了新的文献求助10
1秒前
Xu完成签到 ,获得积分10
1秒前
liuziop发布了新的文献求助10
3秒前
zzj-zjut发布了新的文献求助30
3秒前
cz完成签到,获得积分20
3秒前
CodeCraft应助平常幼菱采纳,获得10
4秒前
田様应助猪猪hero采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助150
6秒前
小二郎应助孙翘楚采纳,获得10
6秒前
6秒前
小熊完成签到,获得积分10
6秒前
郭志倩发布了新的文献求助10
6秒前
6秒前
王慧宇完成签到,获得积分10
6秒前
惠若烟发布了新的文献求助20
7秒前
如意元霜完成签到 ,获得积分10
7秒前
周周完成签到,获得积分20
8秒前
yuan1226完成签到 ,获得积分10
9秒前
流砂完成签到,获得积分10
10秒前
10秒前
复杂的夜香完成签到 ,获得积分10
10秒前
sunidea完成签到,获得积分10
10秒前
yiersan完成签到,获得积分10
10秒前
平安喜乐完成签到,获得积分10
11秒前
11秒前
领导范儿应助繁荣的秋白采纳,获得10
12秒前
打打应助羊布吃稻采纳,获得30
12秒前
EKo完成签到,获得积分10
12秒前
惠若烟完成签到,获得积分10
12秒前
czx发布了新的文献求助10
15秒前
钱念波发布了新的文献求助10
15秒前
黄C发布了新的文献求助10
15秒前
11112233发布了新的文献求助10
15秒前
桐桐应助郭志倩采纳,获得10
15秒前
成就傲霜完成签到,获得积分10
16秒前
馒头完成签到 ,获得积分10
17秒前
17秒前
Owen应助布丁采纳,获得10
17秒前
zzj-zjut完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911216
求助须知:如何正确求助?哪些是违规求助? 4186705
关于积分的说明 13001055
捐赠科研通 3954531
什么是DOI,文献DOI怎么找? 2168334
邀请新用户注册赠送积分活动 1186721
关于科研通互助平台的介绍 1094125