Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods

城市热岛 强度(物理) 共同空间格局 环境科学 空格(标点符号) 空间生态学 城市绿地 自然地理学 计算机科学 地理 气象学 数学 统计 生态学 物理 操作系统 生物 量子力学
作者
Jinyao Lin,Suixuan Qiu,Xiujuan Tan,Yaye Zhuang
出处
期刊:Building and Environment [Elsevier]
卷期号:228: 109910-109910 被引量:123
标识
DOI:10.1016/j.buildenv.2022.109910
摘要

Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助Crazyhhb采纳,获得10
1秒前
传奇3应助咔嚓采纳,获得10
1秒前
1秒前
2秒前
abcd_1067发布了新的文献求助10
2秒前
又绿完成签到,获得积分10
3秒前
4秒前
水伏发电完成签到,获得积分20
5秒前
搞怪诗珊发布了新的文献求助10
7秒前
8秒前
iKoKoA发布了新的文献求助10
8秒前
穆若发布了新的文献求助10
8秒前
又绿发布了新的文献求助20
8秒前
zjy发布了新的文献求助10
13秒前
双目识林完成签到 ,获得积分10
13秒前
thchiang发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
17秒前
穆若完成签到,获得积分10
17秒前
含蓄之卉发布了新的文献求助30
17秒前
Roger发布了新的文献求助10
19秒前
6a完成签到 ,获得积分10
20秒前
20秒前
圈圈发布了新的文献求助10
21秒前
夏天的风发布了新的文献求助10
22秒前
碧蓝翅膀发布了新的文献求助10
23秒前
26秒前
26秒前
上官若男应助wujiachen_1999采纳,获得10
26秒前
NexusExplorer应助123采纳,获得10
27秒前
哲别发布了新的文献求助10
31秒前
丘比特应助圈圈采纳,获得10
32秒前
ZOEY完成签到,获得积分10
32秒前
iKoKoA完成签到,获得积分10
34秒前
yznfly给huangqian的求助进行了留言
35秒前
伶俐海安完成签到 ,获得积分10
37秒前
吃人不眨眼应助李李采纳,获得20
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642542
关于积分的说明 14668440
捐赠科研通 4583969
什么是DOI,文献DOI怎么找? 2514468
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459446