Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods

城市热岛 强度(物理) 共同空间格局 环境科学 空格(标点符号) 空间生态学 城市绿地 自然地理学 计算机科学 地理 气象学 数学 统计 生态学 物理 操作系统 生物 量子力学
作者
Jinyao Lin,Suixuan Qiu,Xiujuan Tan,Yaye Zhuang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:228: 109910-109910 被引量:123
标识
DOI:10.1016/j.buildenv.2022.109910
摘要

Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李钦完成签到,获得积分10
1秒前
2秒前
FP完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
顺利毕业完成签到,获得积分10
3秒前
王肄博发布了新的文献求助10
4秒前
秀丽笑容完成签到 ,获得积分10
5秒前
朴素若枫发布了新的文献求助20
5秒前
qq关闭了qq文献求助
5秒前
5秒前
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
恋雅颖月应助科研通管家采纳,获得10
6秒前
刘水几发布了新的文献求助10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
张思齐完成签到,获得积分10
7秒前
隐形曼青应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
沈海完成签到,获得积分10
7秒前
诡异乐园完成签到,获得积分20
7秒前
斯文败类应助要减肥的笙采纳,获得10
9秒前
9秒前
wang完成签到,获得积分10
10秒前
哒哒完成签到,获得积分10
10秒前
所所应助kaisim采纳,获得10
10秒前
田様应助小科比采纳,获得10
10秒前
10秒前
科研通AI2S应助汪汪采纳,获得10
11秒前
12秒前
刘水几完成签到,获得积分10
13秒前
HelloJoey发布了新的文献求助10
14秒前
15秒前
15秒前
yuxixi完成签到 ,获得积分10
15秒前
传奇3应助charles采纳,获得10
18秒前
公冶愚志发布了新的文献求助10
18秒前
要减肥的笙完成签到,获得积分20
18秒前
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451