A coastal wetlands mapping approach of Yellow River Delta with a hierarchical classification and optimal feature selection framework

湿地 特征(语言学) 随机森林 特征选择 特征提取 遥感 计算机科学 环境科学 数据挖掘 模式识别(心理学) 人工智能 地理 生态学 语言学 生物 哲学
作者
Huaqiao Xing,Jingge Niu,Yongyu Feng,Dongyang Hou,Yan Wang,Zhiqiang Wang
出处
期刊:Catena [Elsevier BV]
卷期号:223: 106897-106897 被引量:39
标识
DOI:10.1016/j.catena.2022.106897
摘要

Wetlands play an important role in ecological health and sustainable development, their spatial distribution and explicit thematic information are crucial for developing management and conservation measures. The Yellow River Delta is an important coastal wetland reserve in China, its wetland types are complex and diverse, natural and artificial wetlands are easily confused, making refined classification more difficult. To address this challenge, we proposed a new wetland mapping approach by combing hierarchical classification framework (HCF) and optimal feature selection. First, inheritance-based multiscale segmentation was carried out to obtain object-oriented images, and decision tree classification was used for preliminarily identify wetland and non-wetland. Second, recursive feature elimination and cross-validation (RFECV) was used to select optimal features, which was then utilized for wetland refinement extraction by using random forest (RF) algorithm. The experiments were performed based on Sentinel-1, Sentinel-2 and NASADEM datasets. The results show that effective wetland classification features can be selected by using RFECV. The feature scores are as follows, red edge index > spectral features > vegetation/water body index > backscatter coefficient > topographic features > texture features > location feature > urban index > geometric feature. The overall accuracy and Kappa coefficient of the method in this paper are 92.36 % and 0.915, which are 14.62 % and 6.68 % higher than using only HCF or only RFECV. Compared with the GlobeLand30 and CAS_Wetlands datasets, the refinement of wetland mapping in this paper is higher. This study provides a new idea in methodological selection for wetland information extraction, and the resulting coastal wetland map can be used for sustainable management, ecological assessment and conservation of the Yellow River Delta.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喵小权发布了新的文献求助10
2秒前
无花果应助梅溪湖西采纳,获得10
3秒前
hyx发布了新的文献求助10
3秒前
4秒前
5秒前
残山醉梦完成签到,获得积分10
5秒前
PSY发布了新的文献求助10
5秒前
6秒前
6秒前
ytsong完成签到,获得积分10
6秒前
滕永杰完成签到,获得积分10
7秒前
路过你的夏完成签到,获得积分20
7秒前
瘦瘦发布了新的文献求助10
8秒前
9秒前
万系风发布了新的文献求助30
9秒前
搜集达人应助白羽佳采纳,获得10
11秒前
11秒前
ytsong发布了新的文献求助10
12秒前
yyxx发布了新的文献求助10
14秒前
科研通AI5应助海豹采纳,获得10
14秒前
hyx完成签到,获得积分10
15秒前
焕颜完成签到,获得积分20
15秒前
16秒前
17秒前
18秒前
小北完成签到,获得积分10
18秒前
19秒前
光夜发布了新的文献求助20
20秒前
修管子完成签到 ,获得积分0
21秒前
量子星尘发布了新的文献求助10
22秒前
丘比特应助紫陌采纳,获得10
22秒前
化身孤岛的鲸完成签到 ,获得积分10
23秒前
丘比特应助小北采纳,获得10
23秒前
狂野的驳发布了新的文献求助10
23秒前
等待的笑白完成签到,获得积分10
23秒前
所所应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
凉薄少年应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956621
求助须知:如何正确求助?哪些是违规求助? 3502685
关于积分的说明 11109755
捐赠科研通 3233502
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870676
科研通“疑难数据库(出版商)”最低求助积分说明 802143