MARPPI: boosting prediction of protein–protein interactions with multi-scale architecture residual network

计算机科学 相互信息 人工智能 残余物 模式识别(心理学) Boosting(机器学习) 数据挖掘 机器学习 算法
作者
Xue Li,Peifu Han,Wenqi Chen,Changnan Gao,Shuang Wang,Tao Song,Muyuan Niu,Alfonso Rodríguez‐Patón
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:10
标识
DOI:10.1093/bib/bbac524
摘要

Protein-protein interactions (PPIs) are a major component of the cellular biochemical reaction network. Rich sequence information and machine learning techniques reduce the dependence of exploring PPIs on wet experiments, which are costly and time-consuming. This paper proposes a PPI prediction model, multi-scale architecture residual network for PPIs (MARPPI), based on dual-channel and multi-feature. Multi-feature leverages Res2vec to obtain the association information between residues, and utilizes pseudo amino acid composition, autocorrelation descriptors and multivariate mutual information to achieve the amino acid composition and order information, physicochemical properties and information entropy, respectively. Dual channel utilizes multi-scale architecture improved ResNet network which extracts protein sequence features to reduce protein feature loss. Compared with other advanced methods, MARPPI achieves 96.03%, 99.01% and 91.80% accuracy in the intraspecific datasets of Saccharomyces cerevisiae, Human and Helicobacter pylori, respectively. The accuracy on the two interspecific datasets of Human-Bacillus anthracis and Human-Yersinia pestis is 97.29%, and 95.30%, respectively. In addition, results on specific datasets of disease (neurodegenerative and metabolic disorders) demonstrate the ability to detect hidden interactions. To better illustrate the performance of MARPPI, evaluations on independent datasets and PPIs network suggest that MARPPI can be used to predict cross-species interactions. The above shows that MARPPI can be regarded as a concise, efficient and accurate tool for PPI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aten应助liars采纳,获得10
刚刚
金枪鱼子应助kjh采纳,获得30
刚刚
Robe完成签到,获得积分20
刚刚
鹤轸完成签到,获得积分10
1秒前
vv完成签到,获得积分10
1秒前
曾经碧蓉完成签到,获得积分20
1秒前
郑恩熙完成签到,获得积分10
1秒前
小雪糕完成签到,获得积分10
2秒前
大方弘文完成签到,获得积分10
3秒前
叶子完成签到,获得积分10
3秒前
3秒前
该房地产个人的完成签到,获得积分10
4秒前
runer发布了新的文献求助10
4秒前
冯宇完成签到,获得积分20
4秒前
乐乐应助lqkcqmu采纳,获得30
5秒前
Leisure_Lee发布了新的文献求助30
7秒前
过氧化氢应助[刘小婷]采纳,获得10
7秒前
华仔应助小马过河采纳,获得10
8秒前
丢丢完成签到,获得积分10
8秒前
情怀应助Yellue采纳,获得10
8秒前
终生科研徒刑完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
小陈发布了新的文献求助10
8秒前
9秒前
djf完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助飘逸秋荷采纳,获得10
10秒前
赘婿应助悲凉的尔蓝采纳,获得10
10秒前
彭于彦祖应助符宇新采纳,获得30
11秒前
hzc应助hui采纳,获得10
12秒前
伊yan完成签到 ,获得积分10
12秒前
12秒前
追寻安柏发布了新的文献求助10
12秒前
antman完成签到,获得积分10
12秒前
阳光彩虹完成签到,获得积分20
12秒前
会撒娇的芷烟完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600