View-Normalized and Subject-Independent Skeleton Generation for Action Recognition

人工智能 计算机科学 骨架(计算机编程) 判别式 模式识别(心理学) 规范化(社会学) 鉴别器 人体骨骼 机器学习 计算机视觉 电信 社会学 探测器 人类学 程序设计语言
作者
Qingzhe Pan,Zhifu Zhao,Xuemei Xie,Jianan Li,Yuhan Cao,Guangming Shi
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (12): 7398-7412 被引量:3
标识
DOI:10.1109/tcsvt.2022.3219864
摘要

Skeleton-based action recognition has attracted great interest in computer vision. For this task, a challenging problem concerns the large intraclass variances of skeleton data, which are mainly caused by diverse viewpoints and subjects, and greatly increase the difficulty of modeling actions through a network. To address the above problem, we propose a variance reduction (VaRe) framework for skeleton-based action recognition, which consists of a view-normalization generative adversarial network (VN-GAN), a subject-independent network (SINet) and a classification network. First, the VN-GAN is responsible for reducing view-induced intraclass variances. Specifically, this network, comprising a generator and a discriminator, is aimed at learning a mapping from a diverse-view skeleton distribution to a unified-view skeleton distribution in an unsupervised manner, thereby generating a view-normalized skeleton. Second, taking the view-normalized skeleton as input, the SINet focuses on reducing the influences of the personal habits of subjects on action recognition. To generate SI skeleton data, the SINet automatically adjusts the human pose according to the human kinematic structure under a classification loss constraint. Finally, without the interference of view- and subject-induced variances, the classification network can concentrate more on learning discriminative action features to predict classes. Furthermore, by combining the joint and bone modalities, the proposed framework achieves competitive performance on three benchmarks: NTU RGB+D, NTU-120 RGB+D and Northwestern-UCLA Multiview Action 3D.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Capital发布了新的文献求助10
1秒前
鲤鱼不吐泡泡关注了科研通微信公众号
2秒前
半江发布了新的文献求助10
2秒前
热心的寒天完成签到,获得积分10
2秒前
xiaoxiao完成签到,获得积分10
3秒前
忐忑的惜天完成签到,获得积分20
6秒前
哎呀呀完成签到,获得积分10
6秒前
今后应助LLLLL采纳,获得10
7秒前
7秒前
8秒前
tonyhuang完成签到,获得积分10
9秒前
9秒前
空2完成签到 ,获得积分10
9秒前
脑洞疼应助22222采纳,获得10
9秒前
10秒前
10秒前
似鱼发布了新的文献求助10
10秒前
11秒前
小二郎应助qaw采纳,获得10
12秒前
深情安青应助Feng采纳,获得10
12秒前
13秒前
宫一手发布了新的文献求助10
13秒前
雪白的雪完成签到,获得积分10
13秒前
神经蛙完成签到,获得积分10
14秒前
郭郭完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
liu11发布了新的文献求助10
16秒前
16秒前
16秒前
杰尼龟发布了新的文献求助10
16秒前
16秒前
碎峰发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
赘婿应助lihaifeng采纳,获得10
20秒前
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129368
求助须知:如何正确求助?哪些是违规求助? 2780183
关于积分的说明 7746679
捐赠科研通 2435368
什么是DOI,文献DOI怎么找? 1294055
科研通“疑难数据库(出版商)”最低求助积分说明 623518
版权声明 600542