数学
半群
贝索夫空间
点式的
纯数学
有界函数
类型(生物学)
对角线的
操作员(生物学)
核(代数)
数学分析
插值空间
功能分析
生态学
生物化学
化学
几何学
抑制因子
生物
转录因子
基因
作者
The Anh Bui,Xuan Thinh Duong
标识
DOI:10.57262/ade/1487386867
摘要
Let $(X, d, \mu)$ be a space of homogeneous type equipped with a distance $d$ and a measure $\mu$. Assume that $L$ is a closed linear operator which generates an analytic semigroup $e^{-tL}, t > 0$. Also assume that $L$ has a bounded $H_\infty$-calculus on $L^2(X)$ and satisfies the $L^p-L^q$ semigroup estimates (which is weaker than the pointwise Gaussian or Poisson heat kernel bounds). The aim of this paper is to establish a theory of inhomogeneous Besov spaces associated to such an operator $L$. We prove the molecular decompositions for the new Besov spaces and obtain the boundedness of the fractional powers $(I+L)^{-\gamma}, \gamma > 0$ on these Besov spaces. Finally, we carry out a comparison between our new Besov spaces and the classical Besov spaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI