DHAN: Encrypted JPEG image retrieval via DCT histograms-based attention networks

计算机科学 加密 离散余弦变换 人工智能 上传 JPEG格式 计算机视觉 卷积神经网络 模式识别(心理学) 图像(数学) 计算机网络 操作系统
作者
Qihua Feng,Peiya Li,Zhixun Lu,Zhibo Zhou,Yongdong Wu,Jian Weng,Feiran Huang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:133: 109935-109935 被引量:7
标识
DOI:10.1016/j.asoc.2022.109935
摘要

In image retrieval, the images to be retrieved are stored on remote servers. Since the images contain amounts of privacy information and the server cannot be fully trusted, people usually encrypt their images before uploading them to the server, which raises the demand for encrypted image retrieval (EIR). Current EIR techniques extract ruled hand-craft features from cipher images first and then build retrieval models (e.g., support vector machine, SVM) by these features, or use deep learning models (e.g., Convolutional Neural Network, CNN) to learn cipher-image representations in an end-to-end manner. However, SVM is not skilled at learning non-linear embedding in complex image database, and end-to-end EIR leads to low image security or retrieval performance because CNN is sensitive to extreme chaotic cipher images. Not-end-to-end EIR offers excellent encryption performance, and deep learning can further mine non-linear embedding from ruled hand-craft features. To this end, we propose a novel EIR scheme, named discrete cosine transform (DCT) Histograms-based Attention Networks (DHAN), which is based on deep learning to enhance expression ability of cipher-image in a not-end-to-end manner. Specifically, the DCT coefficients of images are encrypted by value replacement and block permutation encryption, and then the effective histogram features of DCT coefficients are extracted from the cipher images since the sets of DCT frequency in encrypted images are similar to that of plain images. After that, to dynamically learn the salient features of cipher images, we propose a new module named ResAttention and design deep attention networks to provide retrieval. Extensive experiments on two datasets demonstrate that DHAN not only provides high image security but also greatly improves retrieval performance than that of existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Yolo采纳,获得10
1秒前
脑洞疼应助深情的迎海采纳,获得10
1秒前
Jason发布了新的文献求助10
1秒前
赘婿应助Jiang-Yujia采纳,获得10
2秒前
4秒前
Triumph完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
yzy完成签到,获得积分10
7秒前
微笑的涛发布了新的文献求助10
8秒前
8秒前
8秒前
由怜雪完成签到,获得积分10
8秒前
9秒前
Akim应助nova采纳,获得10
9秒前
xhn完成签到 ,获得积分10
10秒前
wpz完成签到,获得积分10
10秒前
情怀应助段菲鹰采纳,获得10
11秒前
11秒前
wanci应助可靠的寒风采纳,获得20
11秒前
12秒前
13秒前
14秒前
gyhuang发布了新的文献求助10
15秒前
naturehome发布了新的文献求助10
15秒前
秃头叶青青完成签到,获得积分10
15秒前
17秒前
17秒前
美好斓发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
七米日光发布了新的文献求助10
21秒前
syhero发布了新的文献求助10
22秒前
22秒前
22秒前
球球完成签到,获得积分10
23秒前
法知一完成签到,获得积分10
23秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542