DHAN: Encrypted JPEG image retrieval via DCT histograms-based attention networks

计算机科学 加密 离散余弦变换 人工智能 上传 JPEG格式 计算机视觉 卷积神经网络 模式识别(心理学) 图像(数学) 计算机网络 操作系统
作者
Qihua Feng,Peiya Li,Zhixun Lu,Zhibo Zhou,Yongdong Wu,Jian Weng,Feiran Huang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109935-109935 被引量:7
标识
DOI:10.1016/j.asoc.2022.109935
摘要

In image retrieval, the images to be retrieved are stored on remote servers. Since the images contain amounts of privacy information and the server cannot be fully trusted, people usually encrypt their images before uploading them to the server, which raises the demand for encrypted image retrieval (EIR). Current EIR techniques extract ruled hand-craft features from cipher images first and then build retrieval models (e.g., support vector machine, SVM) by these features, or use deep learning models (e.g., Convolutional Neural Network, CNN) to learn cipher-image representations in an end-to-end manner. However, SVM is not skilled at learning non-linear embedding in complex image database, and end-to-end EIR leads to low image security or retrieval performance because CNN is sensitive to extreme chaotic cipher images. Not-end-to-end EIR offers excellent encryption performance, and deep learning can further mine non-linear embedding from ruled hand-craft features. To this end, we propose a novel EIR scheme, named discrete cosine transform (DCT) Histograms-based Attention Networks (DHAN), which is based on deep learning to enhance expression ability of cipher-image in a not-end-to-end manner. Specifically, the DCT coefficients of images are encrypted by value replacement and block permutation encryption, and then the effective histogram features of DCT coefficients are extracted from the cipher images since the sets of DCT frequency in encrypted images are similar to that of plain images. After that, to dynamically learn the salient features of cipher images, we propose a new module named ResAttention and design deep attention networks to provide retrieval. Extensive experiments on two datasets demonstrate that DHAN not only provides high image security but also greatly improves retrieval performance than that of existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
内卷没有赢家完成签到,获得积分10
刚刚
星辰大海应助可达鸭采纳,获得30
1秒前
韩晚渔完成签到 ,获得积分10
4秒前
杨雨帆发布了新的文献求助10
4秒前
小雨完成签到,获得积分10
7秒前
9秒前
情怀应助杨雨帆采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得50
10秒前
xzy998应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得50
10秒前
ggxhygr应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
pcr163应助科研通管家采纳,获得50
11秒前
12秒前
蓝天海完成签到,获得积分0
14秒前
15秒前
聪慧雪糕发布了新的文献求助10
16秒前
谢香辣发布了新的文献求助10
16秒前
共享精神应助walden采纳,获得10
16秒前
16秒前
Adzuki0812完成签到 ,获得积分10
16秒前
温暖厉发布了新的文献求助10
18秒前
6633发布了新的文献求助10
19秒前
科研通AI5应助923148045采纳,获得10
21秒前
聂白晴发布了新的文献求助10
21秒前
自信的九娘完成签到,获得积分10
23秒前
26秒前
轻松香寒完成签到,获得积分20
27秒前
完美世界应助mao采纳,获得10
30秒前
科研通AI5应助xiongdi521采纳,获得10
31秒前
35秒前
Orange应助JQKing采纳,获得10
36秒前
111完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967