DHAN: Encrypted JPEG image retrieval via DCT histograms-based attention networks

计算机科学 加密 离散余弦变换 人工智能 上传 JPEG格式 计算机视觉 卷积神经网络 模式识别(心理学) 图像(数学) 计算机网络 操作系统
作者
Qihua Feng,Peiya Li,Zhixun Lu,Zhibo Zhou,Yongdong Wu,Jian Weng,Feiran Huang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:133: 109935-109935 被引量:10
标识
DOI:10.1016/j.asoc.2022.109935
摘要

In image retrieval, the images to be retrieved are stored on remote servers. Since the images contain amounts of privacy information and the server cannot be fully trusted, people usually encrypt their images before uploading them to the server, which raises the demand for encrypted image retrieval (EIR). Current EIR techniques extract ruled hand-craft features from cipher images first and then build retrieval models (e.g., support vector machine, SVM) by these features, or use deep learning models (e.g., Convolutional Neural Network, CNN) to learn cipher-image representations in an end-to-end manner. However, SVM is not skilled at learning non-linear embedding in complex image database, and end-to-end EIR leads to low image security or retrieval performance because CNN is sensitive to extreme chaotic cipher images. Not-end-to-end EIR offers excellent encryption performance, and deep learning can further mine non-linear embedding from ruled hand-craft features. To this end, we propose a novel EIR scheme, named discrete cosine transform (DCT) Histograms-based Attention Networks (DHAN), which is based on deep learning to enhance expression ability of cipher-image in a not-end-to-end manner. Specifically, the DCT coefficients of images are encrypted by value replacement and block permutation encryption, and then the effective histogram features of DCT coefficients are extracted from the cipher images since the sets of DCT frequency in encrypted images are similar to that of plain images. After that, to dynamically learn the salient features of cipher images, we propose a new module named ResAttention and design deep attention networks to provide retrieval. Extensive experiments on two datasets demonstrate that DHAN not only provides high image security but also greatly improves retrieval performance than that of existing schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术乞丐发布了新的文献求助10
2秒前
万能图书馆应助怡然问晴采纳,获得10
2秒前
Akim应助体贴凌柏采纳,获得10
3秒前
zyq完成签到,获得积分10
4秒前
西瓜完成签到,获得积分10
5秒前
xshzhou完成签到,获得积分10
7秒前
苗条白枫完成签到 ,获得积分10
8秒前
一棵草完成签到,获得积分10
8秒前
内向的跳跳糖完成签到,获得积分10
8秒前
遇见飞儿完成签到,获得积分0
8秒前
cream完成签到,获得积分20
9秒前
9秒前
小薛完成签到,获得积分10
9秒前
10秒前
Cu_wx完成签到,获得积分10
10秒前
噜噜噜噜噜完成签到,获得积分10
12秒前
赵慧霞关注了科研通微信公众号
12秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
13秒前
内向苡完成签到,获得积分10
14秒前
以筱发布了新的文献求助10
16秒前
bhkwxdxy完成签到,获得积分10
17秒前
悦耳虔纹完成签到 ,获得积分10
17秒前
xx完成签到,获得积分10
17秒前
大气灵枫完成签到,获得积分10
17秒前
妮妮完成签到,获得积分10
18秒前
20秒前
Struggle完成签到 ,获得积分10
21秒前
21秒前
秦兴虎完成签到,获得积分10
22秒前
Drew11完成签到,获得积分10
22秒前
风趣青槐完成签到,获得积分10
24秒前
科隆龙完成签到,获得积分10
25秒前
25秒前
饱满一手完成签到 ,获得积分10
25秒前
99完成签到,获得积分10
27秒前
枕星发布了新的文献求助10
27秒前
drlq2022完成签到,获得积分10
28秒前
王山完成签到,获得积分10
29秒前
自觉寒梦完成签到,获得积分10
30秒前
ding应助缥缈一刀采纳,获得10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029