Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage

医学 人工智能 脑出血 随机森林 接收机工作特性 机器学习 逻辑回归 试验装置 计算机断层摄影术 梯度升压 多层感知器 放射科 模式识别(心理学) 人工神经网络 蛛网膜下腔出血 内科学 计算机科学
作者
Yu-Lun Li,Chu Chen,Lijuan Zhang,Yineng Zheng,Xin‐Ni Lv,Libo Zhao,Qi Li,Fajin Lv
出处
期刊:World Neurosurgery [Elsevier]
卷期号:175: e264-e270 被引量:6
标识
DOI:10.1016/j.wneu.2023.03.066
摘要

To investigate the predictive value of noncontrast computed tomography (NCCT) models based on radiomics features and machine learning for early perihematomal edema (PHE) expansion in patients with spontaneous intracerebral hemorrhage (ICH). We retrospectively reviewed NCCT data from 214 patients with spontaneous ICH. All radiomics features were extracted from volume of interest of hematomas on admission scans. A total of 8 machine learning methods were applied for constructing models in the training and the test set. Receiver operating characteristic analysis and the areas under the curve were used to evaluate the predictive value. A total of 23 features were finally selected to establish models of early PHE expansion after feature screening. Patients were randomly assigned into training (n = 171) and test (n = 43) sets. The accuracy, sensitivity, and specificity in the test set were 72.1%, 90.0%, and 66.7% for the support vector machine model; 79.1%, 70.0%, and 84.4% for the k-nearest neighbor model; 88.4%, 90.0%, and 87.9% for the logistic regression model; 74.4%, 90.0%, and 69.7% for the extra tree model; 74.4%, 90.0%, and 69.7% for the extreme gradient boosting model; 83.7%, 100%, and 78.8% for the multilayer perceptron (MLP) model; 72.1%, 100%, and 65.6% for the light gradient boosting machine model; and 60.5%, 90.0%, and 53.1% for the random forest model, respectively. The MLP model seemed to be the best model for prediction of PHE expansion in patients with ICH. NCCT models based on radiomics features and machine learning could predict early PHE expansion and improve the discrimination of identify spontaneous intracerebral hemorrhage patients at risk of early PHE expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xianlu发布了新的文献求助10
刚刚
编号9527完成签到,获得积分10
刚刚
天天快乐应助求助人员采纳,获得10
刚刚
刚刚
依小米完成签到 ,获得积分10
1秒前
蜗牛发布了新的文献求助10
1秒前
jingfeng完成签到,获得积分10
1秒前
1秒前
zyj完成签到,获得积分10
1秒前
yangkun完成签到,获得积分10
2秒前
annieduan应助独角兽采纳,获得10
2秒前
2秒前
小池同学发布了新的文献求助10
2秒前
3秒前
刻苦邑完成签到,获得积分20
3秒前
顺心纸鹤发布了新的文献求助10
3秒前
俭朴的访云完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助peng采纳,获得10
4秒前
假装学霸完成签到 ,获得积分10
4秒前
4秒前
852应助sun采纳,获得10
4秒前
5秒前
英姑应助秋的账号采纳,获得10
5秒前
Jasper应助秋的账号采纳,获得10
5秒前
小文子完成签到,获得积分10
5秒前
活泼的雅绿完成签到,获得积分10
5秒前
6秒前
6秒前
所所应助俭朴的访云采纳,获得10
6秒前
hutu的小朱完成签到,获得积分10
7秒前
研这一块发布了新的文献求助30
7秒前
东方元语应助kiker采纳,获得20
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
MX001发布了新的文献求助10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得100
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512517
求助须知:如何正确求助?哪些是违规求助? 4606978
关于积分的说明 14502144
捐赠科研通 4542339
什么是DOI,文献DOI怎么找? 2489004
邀请新用户注册赠送积分活动 1471040
关于科研通互助平台的介绍 1443182