Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage

医学 人工智能 脑出血 随机森林 接收机工作特性 机器学习 逻辑回归 试验装置 计算机断层摄影术 梯度升压 多层感知器 放射科 模式识别(心理学) 人工神经网络 蛛网膜下腔出血 内科学 计算机科学
作者
Yu-Lun Li,Chu Chen,Lijuan Zhang,Yineng Zheng,Xin‐Ni Lv,Libo Zhao,Qi Li,Fajin Lv
出处
期刊:World Neurosurgery [Elsevier]
卷期号:175: e264-e270 被引量:1
标识
DOI:10.1016/j.wneu.2023.03.066
摘要

To investigate the predictive value of noncontrast computed tomography (NCCT) models based on radiomics features and machine learning for early perihematomal edema (PHE) expansion in patients with spontaneous intracerebral hemorrhage (ICH). We retrospectively reviewed NCCT data from 214 patients with spontaneous ICH. All radiomics features were extracted from volume of interest of hematomas on admission scans. A total of 8 machine learning methods were applied for constructing models in the training and the test set. Receiver operating characteristic analysis and the areas under the curve were used to evaluate the predictive value. A total of 23 features were finally selected to establish models of early PHE expansion after feature screening. Patients were randomly assigned into training (n = 171) and test (n = 43) sets. The accuracy, sensitivity, and specificity in the test set were 72.1%, 90.0%, and 66.7% for the support vector machine model; 79.1%, 70.0%, and 84.4% for the k-nearest neighbor model; 88.4%, 90.0%, and 87.9% for the logistic regression model; 74.4%, 90.0%, and 69.7% for the extra tree model; 74.4%, 90.0%, and 69.7% for the extreme gradient boosting model; 83.7%, 100%, and 78.8% for the multilayer perceptron (MLP) model; 72.1%, 100%, and 65.6% for the light gradient boosting machine model; and 60.5%, 90.0%, and 53.1% for the random forest model, respectively. The MLP model seemed to be the best model for prediction of PHE expansion in patients with ICH. NCCT models based on radiomics features and machine learning could predict early PHE expansion and improve the discrimination of identify spontaneous intracerebral hemorrhage patients at risk of early PHE expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真灯泡发布了新的文献求助10
1秒前
负责月光完成签到,获得积分10
1秒前
1秒前
王啵啵发布了新的文献求助10
2秒前
pluto应助dj幸福旅行采纳,获得10
2秒前
赘婿应助zhuyt采纳,获得10
2秒前
2秒前
3秒前
摸爬滚打发布了新的文献求助10
3秒前
甲基醚发布了新的文献求助10
3秒前
4秒前
tivyg'lk完成签到,获得积分10
5秒前
5秒前
Ava应助wangyue1995采纳,获得10
5秒前
5秒前
我歌发布了新的文献求助20
5秒前
雪白凌晴完成签到 ,获得积分10
6秒前
李123发布了新的文献求助10
6秒前
DD47发布了新的文献求助10
7秒前
宜醉宜游宜睡应助老王采纳,获得20
7秒前
奇卡卡完成签到 ,获得积分10
8秒前
redondo10发布了新的文献求助10
8秒前
9秒前
jason完成签到,获得积分10
10秒前
Ll发布了新的文献求助10
10秒前
10秒前
圣甲虫完成签到 ,获得积分10
10秒前
12秒前
littlepear完成签到,获得积分20
12秒前
壮观的访枫完成签到,获得积分10
12秒前
香蕉觅云应助yi采纳,获得10
13秒前
佩奇完成签到,获得积分10
13秒前
shenzhou9完成签到,获得积分20
14秒前
hwezhu完成签到,获得积分10
14秒前
123应助开心的章鱼哥采纳,获得10
14秒前
14秒前
发发发完成签到,获得积分10
15秒前
Elio发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271