Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage

医学 人工智能 脑出血 随机森林 接收机工作特性 机器学习 逻辑回归 试验装置 计算机断层摄影术 梯度升压 多层感知器 放射科 模式识别(心理学) 人工神经网络 蛛网膜下腔出血 内科学 计算机科学
作者
Yu-Lun Li,Chu Chen,Lijuan Zhang,Yineng Zheng,Xin‐Ni Lv,Libo Zhao,Qi Li,Fajin Lv
出处
期刊:World Neurosurgery [Elsevier BV]
卷期号:175: e264-e270 被引量:6
标识
DOI:10.1016/j.wneu.2023.03.066
摘要

To investigate the predictive value of noncontrast computed tomography (NCCT) models based on radiomics features and machine learning for early perihematomal edema (PHE) expansion in patients with spontaneous intracerebral hemorrhage (ICH). We retrospectively reviewed NCCT data from 214 patients with spontaneous ICH. All radiomics features were extracted from volume of interest of hematomas on admission scans. A total of 8 machine learning methods were applied for constructing models in the training and the test set. Receiver operating characteristic analysis and the areas under the curve were used to evaluate the predictive value. A total of 23 features were finally selected to establish models of early PHE expansion after feature screening. Patients were randomly assigned into training (n = 171) and test (n = 43) sets. The accuracy, sensitivity, and specificity in the test set were 72.1%, 90.0%, and 66.7% for the support vector machine model; 79.1%, 70.0%, and 84.4% for the k-nearest neighbor model; 88.4%, 90.0%, and 87.9% for the logistic regression model; 74.4%, 90.0%, and 69.7% for the extra tree model; 74.4%, 90.0%, and 69.7% for the extreme gradient boosting model; 83.7%, 100%, and 78.8% for the multilayer perceptron (MLP) model; 72.1%, 100%, and 65.6% for the light gradient boosting machine model; and 60.5%, 90.0%, and 53.1% for the random forest model, respectively. The MLP model seemed to be the best model for prediction of PHE expansion in patients with ICH. NCCT models based on radiomics features and machine learning could predict early PHE expansion and improve the discrimination of identify spontaneous intracerebral hemorrhage patients at risk of early PHE expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欧气青年完成签到,获得积分10
1秒前
wanci应助棕榈采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
hhhi应助科研通管家采纳,获得10
1秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
2秒前
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
TRY发布了新的文献求助10
6秒前
绿色水母发布了新的文献求助30
7秒前
聪明伶俐的猪猪侠完成签到,获得积分10
7秒前
orixero应助大不里士采纳,获得10
7秒前
霸气以菱完成签到 ,获得积分10
7秒前
7秒前
激昂的睫毛完成签到,获得积分10
8秒前
么大人发布了新的文献求助10
11秒前
蟹蟹发布了新的文献求助100
13秒前
kannar完成签到,获得积分10
16秒前
CX完成签到,获得积分10
17秒前
小马甲应助汪汪别吃了采纳,获得10
18秒前
雷霆康康完成签到,获得积分10
18秒前
yyy完成签到 ,获得积分10
19秒前
充电宝应助蟹蟹采纳,获得100
19秒前
20秒前
CX发布了新的文献求助20
22秒前
阿燕发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975