Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage

医学 人工智能 脑出血 随机森林 接收机工作特性 机器学习 逻辑回归 试验装置 计算机断层摄影术 梯度升压 多层感知器 放射科 模式识别(心理学) 人工神经网络 蛛网膜下腔出血 内科学 计算机科学
作者
Yu-Lun Li,Chu Chen,Lijuan Zhang,Yineng Zheng,Xin‐Ni Lv,Libo Zhao,Qi Li,Fajin Lv
出处
期刊:World Neurosurgery [Elsevier]
卷期号:175: e264-e270 被引量:6
标识
DOI:10.1016/j.wneu.2023.03.066
摘要

To investigate the predictive value of noncontrast computed tomography (NCCT) models based on radiomics features and machine learning for early perihematomal edema (PHE) expansion in patients with spontaneous intracerebral hemorrhage (ICH). We retrospectively reviewed NCCT data from 214 patients with spontaneous ICH. All radiomics features were extracted from volume of interest of hematomas on admission scans. A total of 8 machine learning methods were applied for constructing models in the training and the test set. Receiver operating characteristic analysis and the areas under the curve were used to evaluate the predictive value. A total of 23 features were finally selected to establish models of early PHE expansion after feature screening. Patients were randomly assigned into training (n = 171) and test (n = 43) sets. The accuracy, sensitivity, and specificity in the test set were 72.1%, 90.0%, and 66.7% for the support vector machine model; 79.1%, 70.0%, and 84.4% for the k-nearest neighbor model; 88.4%, 90.0%, and 87.9% for the logistic regression model; 74.4%, 90.0%, and 69.7% for the extra tree model; 74.4%, 90.0%, and 69.7% for the extreme gradient boosting model; 83.7%, 100%, and 78.8% for the multilayer perceptron (MLP) model; 72.1%, 100%, and 65.6% for the light gradient boosting machine model; and 60.5%, 90.0%, and 53.1% for the random forest model, respectively. The MLP model seemed to be the best model for prediction of PHE expansion in patients with ICH. NCCT models based on radiomics features and machine learning could predict early PHE expansion and improve the discrimination of identify spontaneous intracerebral hemorrhage patients at risk of early PHE expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
杰杰大叔发布了新的文献求助10
2秒前
田様应助Zy采纳,获得10
3秒前
春风吹叁旬完成签到,获得积分20
5秒前
6秒前
7秒前
8秒前
orixero应助平淡的冰巧采纳,获得10
9秒前
10秒前
李密完成签到 ,获得积分10
11秒前
白日做梦完成签到 ,获得积分10
11秒前
mm_zxh完成签到,获得积分10
11秒前
阿航完成签到,获得积分10
12秒前
小许发布了新的文献求助10
12秒前
一勺晚安z发布了新的文献求助10
13秒前
oxygen253完成签到,获得积分10
15秒前
17秒前
橙子爱吃火龙果完成签到 ,获得积分10
17秒前
西西完成签到 ,获得积分10
20秒前
mz11完成签到,获得积分10
20秒前
21秒前
21秒前
Tycoon发布了新的文献求助10
23秒前
李天王完成签到,获得积分10
23秒前
tanrui发布了新的文献求助10
24秒前
24秒前
大西瓜发布了新的文献求助10
25秒前
领导范儿应助现代雪柳采纳,获得10
27秒前
Akim应助Tycoon采纳,获得10
29秒前
Iceshadows发布了新的文献求助10
29秒前
sci大佬完成签到,获得积分10
30秒前
31秒前
闲鱼电脑完成签到,获得积分10
33秒前
33秒前
35秒前
35秒前
39秒前
osteoclast发布了新的文献求助10
40秒前
现代雪柳发布了新的文献求助10
40秒前
纾缓完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160