Prediction of Early Perihematomal Edema Expansion Based on Noncontrast Computed Tomography Radiomics and Machine Learning in Intracerebral Hemorrhage

医学 人工智能 脑出血 随机森林 接收机工作特性 机器学习 逻辑回归 试验装置 计算机断层摄影术 梯度升压 多层感知器 放射科 模式识别(心理学) 人工神经网络 蛛网膜下腔出血 内科学 计算机科学
作者
Yu-Lun Li,Chu Chen,Lijuan Zhang,Yineng Zheng,Xin‐Ni Lv,Libo Zhao,Qi Li,Fajin Lv
出处
期刊:World Neurosurgery [Elsevier]
卷期号:175: e264-e270 被引量:7
标识
DOI:10.1016/j.wneu.2023.03.066
摘要

To investigate the predictive value of noncontrast computed tomography (NCCT) models based on radiomics features and machine learning for early perihematomal edema (PHE) expansion in patients with spontaneous intracerebral hemorrhage (ICH). We retrospectively reviewed NCCT data from 214 patients with spontaneous ICH. All radiomics features were extracted from volume of interest of hematomas on admission scans. A total of 8 machine learning methods were applied for constructing models in the training and the test set. Receiver operating characteristic analysis and the areas under the curve were used to evaluate the predictive value. A total of 23 features were finally selected to establish models of early PHE expansion after feature screening. Patients were randomly assigned into training (n = 171) and test (n = 43) sets. The accuracy, sensitivity, and specificity in the test set were 72.1%, 90.0%, and 66.7% for the support vector machine model; 79.1%, 70.0%, and 84.4% for the k-nearest neighbor model; 88.4%, 90.0%, and 87.9% for the logistic regression model; 74.4%, 90.0%, and 69.7% for the extra tree model; 74.4%, 90.0%, and 69.7% for the extreme gradient boosting model; 83.7%, 100%, and 78.8% for the multilayer perceptron (MLP) model; 72.1%, 100%, and 65.6% for the light gradient boosting machine model; and 60.5%, 90.0%, and 53.1% for the random forest model, respectively. The MLP model seemed to be the best model for prediction of PHE expansion in patients with ICH. NCCT models based on radiomics features and machine learning could predict early PHE expansion and improve the discrimination of identify spontaneous intracerebral hemorrhage patients at risk of early PHE expansion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助阿杰采纳,获得10
刚刚
1秒前
桐桐应助罗兴鲜采纳,获得10
1秒前
自觉曲奇完成签到 ,获得积分10
1秒前
1秒前
陌染完成签到,获得积分10
2秒前
飞羽完成签到 ,获得积分10
2秒前
张晓娜完成签到,获得积分10
2秒前
Jiaying完成签到 ,获得积分10
3秒前
Orange应助困得晕乎乎采纳,获得10
3秒前
3秒前
zxc完成签到,获得积分10
4秒前
glacial完成签到,获得积分10
4秒前
末岛完成签到,获得积分10
4秒前
cloud完成签到 ,获得积分10
5秒前
卷发麦麦发布了新的文献求助10
6秒前
6秒前
小马甲应助逆流的鱼采纳,获得10
6秒前
春儿完成签到,获得积分10
7秒前
现代的芹完成签到,获得积分10
7秒前
烟花应助侯卜文采纳,获得10
8秒前
8秒前
8秒前
王王完成签到,获得积分10
8秒前
stinkyfish发布了新的文献求助10
8秒前
8秒前
9秒前
隐形曼青应助GS_lly采纳,获得10
9秒前
八八小葵完成签到,获得积分10
10秒前
朱剑洪完成签到,获得积分10
10秒前
ALonFan发布了新的文献求助10
10秒前
10秒前
11秒前
zsm668发布了新的文献求助10
11秒前
PinKing发布了新的文献求助10
11秒前
香蕉觅云应助hanxin采纳,获得10
11秒前
11秒前
bliss发布了新的文献求助10
12秒前
科研迪完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444