卡尔曼滤波器
估计员
控制理论(社会学)
鉴定(生物学)
扩展卡尔曼滤波器
估计理论
状态空间
状态空间表示
系统标识
滤波器(信号处理)
计算机科学
数学
算法
人工智能
统计
数据建模
控制(管理)
生物
数据库
植物
计算机视觉
摘要
Summary This paper addresses the combined estimation issues of the parameters and states for fractional‐order Hammerstein state space systems with colored noises. An extended state estimator is derived by using the parameter estimates to replace the unknown system parameters in Kalman filter. The hierarchical identification principle is introduced to solve the unknown parameters of measurement noises. By introducing the forgetting factor, an extended Kalman filtering‐based hierarchical forgetting factor stochastic gradient algorithm is presented to estimate the unknown states, parameters and fractional‐order. A numerical example is respectively presented to demonstrate the feasibility of the proposed identification algorithm. It can be seen that the estimation errors are relatively small, which reflects the proposed algorithms have good identification effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI