Detector shifting and deep learning based ring artifact correction method for low‐dose CT

人工智能 工件(错误) 探测器 计算机视觉 计算机科学 核医学 戒指(化学) 医学影像学 计算机断层摄影术 医学物理学 物理 光学 医学 放射科 有机化学 化学
作者
Yuedong Liu,Cunfeng Wei,Qiong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4308-4324 被引量:5
标识
DOI:10.1002/mp.16225
摘要

Abstract Background In x‐ray computed tomography (CT), the gain inconsistency of detector units leads to ring artifacts in the reconstructed images, seriously destroys the image structure, and is not conducive to image recognition. In addition, to reduce radiation dose and scanning time, especially photon counting CT, low‐dose CT is required, so it is important to reduce the noise and suppress ring artifacts in low‐dose CT images simultaneously. Purpose Deep learning is an effective method to suppress ring artifacts, but there are still residual artifacts in corrected images. And the feature recognition ability of the network for ring artifacts decreases due to the effect of noise in the low‐dose CT images. In this paper, a method is proposed to achieve noise reduction and ring artifact removal simultaneously. Methods To solve these problems, we propose a ring artifact correction method for low‐dose CT based on detector shifting and deep learning in this paper. Firstly, at the CT scanning stage, the detector horizontally shifts randomly at each projection to alleviate the ring artifacts as front processing. Thus, the ring artifacts are transformed into dispersed noise in front processed images. Secondly, deep learning is used for dispersed noise and statistical noise reduction. Results Both simulation and real data experiments are conducted to evaluate the proposed method. Compared to other methods, the results show that the proposed method in this paper has better effect on removing ring artifacts in the low‐dose CT images. Specifically, the RMSEs and SSIMs of the two sets of simulated and experiment data are better compared to the raw images significantly. Conclusions The method proposed in this paper combines detector shifting and deep learning to remove ring artifacts and statistical noise simultaneously. The results show that the proposed method is able to get better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳绝施发布了新的文献求助10
1秒前
晓海完成签到,获得积分10
1秒前
谦让新竹完成签到,获得积分10
2秒前
白术发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
李李完成签到 ,获得积分10
4秒前
懦弱的如蓉完成签到,获得积分10
4秒前
魏白晴完成签到,获得积分10
4秒前
kento应助MIRROR采纳,获得100
5秒前
simple完成签到,获得积分0
6秒前
在水一方应助JD.采纳,获得10
6秒前
7秒前
shifeng_zai发布了新的文献求助10
7秒前
陈文斌完成签到,获得积分10
7秒前
Ava应助晓海采纳,获得10
7秒前
西门明雪完成签到,获得积分10
7秒前
kkk发布了新的文献求助10
7秒前
框郑完成签到 ,获得积分10
8秒前
白术完成签到,获得积分20
8秒前
8秒前
xg完成签到 ,获得积分10
10秒前
mk完成签到,获得积分10
10秒前
ddsyg126完成签到,获得积分10
12秒前
英俊的铭应助庚大屁采纳,获得10
13秒前
阳光冰颜完成签到,获得积分10
13秒前
ne发布了新的文献求助10
13秒前
阿俊1212完成签到,获得积分10
13秒前
竹筏过海应助LSSW采纳,获得80
13秒前
丘比特应助明明采纳,获得10
13秒前
zzzzz发布了新的文献求助10
13秒前
FashionBoy应助愉快的宛儿采纳,获得10
14秒前
abbsdan给abbsdan的求助进行了留言
15秒前
霸气的小叮当完成签到,获得积分10
16秒前
16秒前
shifeng_zai完成签到,获得积分20
18秒前
心灵美鑫完成签到 ,获得积分10
18秒前
李健的粉丝团团长应助kkk采纳,获得10
18秒前
阿九完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175