Detector shifting and deep learning based ring artifact correction method for low‐dose CT

人工智能 工件(错误) 探测器 计算机视觉 计算机科学 核医学 戒指(化学) 医学影像学 计算机断层摄影术 医学物理学 物理 光学 医学 放射科 有机化学 化学
作者
Yuedong Liu,Cunfeng Wei,Qiong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4308-4324 被引量:5
标识
DOI:10.1002/mp.16225
摘要

Abstract Background In x‐ray computed tomography (CT), the gain inconsistency of detector units leads to ring artifacts in the reconstructed images, seriously destroys the image structure, and is not conducive to image recognition. In addition, to reduce radiation dose and scanning time, especially photon counting CT, low‐dose CT is required, so it is important to reduce the noise and suppress ring artifacts in low‐dose CT images simultaneously. Purpose Deep learning is an effective method to suppress ring artifacts, but there are still residual artifacts in corrected images. And the feature recognition ability of the network for ring artifacts decreases due to the effect of noise in the low‐dose CT images. In this paper, a method is proposed to achieve noise reduction and ring artifact removal simultaneously. Methods To solve these problems, we propose a ring artifact correction method for low‐dose CT based on detector shifting and deep learning in this paper. Firstly, at the CT scanning stage, the detector horizontally shifts randomly at each projection to alleviate the ring artifacts as front processing. Thus, the ring artifacts are transformed into dispersed noise in front processed images. Secondly, deep learning is used for dispersed noise and statistical noise reduction. Results Both simulation and real data experiments are conducted to evaluate the proposed method. Compared to other methods, the results show that the proposed method in this paper has better effect on removing ring artifacts in the low‐dose CT images. Specifically, the RMSEs and SSIMs of the two sets of simulated and experiment data are better compared to the raw images significantly. Conclusions The method proposed in this paper combines detector shifting and deep learning to remove ring artifacts and statistical noise simultaneously. The results show that the proposed method is able to get better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的曼荷完成签到,获得积分20
1秒前
静心安逸完成签到,获得积分10
1秒前
跳跃的夜山完成签到,获得积分10
2秒前
3秒前
小于完成签到,获得积分10
3秒前
竹桃完成签到 ,获得积分10
4秒前
芹菜煎蛋完成签到,获得积分10
5秒前
王来敏完成签到,获得积分10
5秒前
blue应助磷酸丙糖异构酶采纳,获得10
6秒前
贾明霞完成签到,获得积分10
9秒前
9秒前
慕青应助飞稿采纳,获得10
9秒前
哈哈哈完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助冷酷的松思采纳,获得10
11秒前
long发布了新的文献求助20
11秒前
Ciri完成签到,获得积分10
12秒前
天天快乐应助tyx采纳,获得10
12秒前
12秒前
13秒前
13秒前
chihuey完成签到,获得积分10
13秒前
14秒前
哈哈哈发布了新的文献求助10
14秒前
Tao发布了新的文献求助10
14秒前
心杨完成签到 ,获得积分10
16秒前
Gilmore完成签到,获得积分10
16秒前
鲸落发布了新的文献求助10
16秒前
热气球应助风趣翠霜采纳,获得20
16秒前
情怀应助包包琪采纳,获得30
17秒前
1234发布了新的文献求助10
17秒前
Elcric完成签到,获得积分20
18秒前
哩哩哩完成签到 ,获得积分10
18秒前
Mine发布了新的文献求助10
18秒前
颜靖仇发布了新的文献求助10
18秒前
19秒前
123发布了新的文献求助10
20秒前
虫贝完成签到,获得积分10
20秒前
周久发布了新的文献求助10
21秒前
现代的访曼应助哈哈哈采纳,获得20
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089